




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年陕西省数学九年级第一学期期末质量跟踪监视试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,AB是⊙O的弦,OC⊥AB于点H,若∠AOC=60°,OH=1,则弦AB的长为()A.2 B. C.2 D.42.若关于x的一元二次方程x2-2x-k=0没有实数根,则k的取值范围是()A.k>-1 B.k≥-1 C.k<-1 D.k≤-13.如图,是用棋子摆成的“上”字:如果按照以上规律继续摆下去,那么通过观察,可以发现:第30个“上”字需用多少枚棋子()A.122 B.120 C.118 D.1164.对于二次函数y=(x-1)2+2的图象,下列说法正确的是()A.开口向下B.当x=-1,时,y有最大值是2C.对称轴是x=-1D.顶点坐标是(1,2)5.已知反比例函数y=kx的图象经过点P(﹣2,3A.(﹣1,﹣6) B.(1,6) C.(3,﹣2) D.(3,2)6.如图,△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使得DC∥AB,则∠BAE等于()A.30° B.40° C.50° D.60°7.如图所示,△的顶点是正方形网格的格点,则的值是()A. B. C. D.8.如图,在△ABC中,过点A作射线AD∥BC,点D不与点A重合,且AD≠BC,连结BD交AC于点O,连结CD,设△ABO、△ADO、△CDO和△BCO的面积分别为S1、S2、SA.S1=C.S1+9.若四边形ABCD是⊙O的内接四边形,且∠A︰∠B︰∠C=1︰3︰8,则∠D的度数是A.10° B.30° C.80° D.120°10.将抛物线y=2x2向左平移3个单位得到的抛物线的解析式是()A.y=2x2+3 B.y=2x2﹣3C.y=2(x+3)2 D.y=2(x﹣3)2二、填空题(每小题3分,共24分)11.已知关于的方程的一个根为6,则实数的值为__________.12.已知扇形半径为5cm,圆心角为60°,则该扇形的弧长为________cm.13.如图,在矩形中,,点分别在矩形的各边上,,则四边形的周长是______________.14.如图,网格中的四个格点组成菱形ABCD,则tan∠DBC的值为___________.15.抛物线y=(x﹣3)2﹣2的顶点坐标是_____.16.抛物线的部分图象如图所示,对称轴是直线,则关于的一元二次方程的解为____.17.如图,在等腰直角三角形中,,点在轴上,点的坐标为(0,3),若点恰好在反比例函数第一象限的图象上,过点作轴于点,那么点的坐标为__________.18.如图,在中,,点是边的中点,,则的值为___________.三、解答题(共66分)19.(10分)当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A1,A2,A3,A4,现对A1,A2,A3,A4统计后,制成如图所示的统计图.(1)求七年级已“建档立卡”的贫困家庭的学生总人数;(2)将条形统计图补充完整,并求出A1所在扇形的圆心角的度数;(3)现从A1,A2中各选出一人进行座谈,若A1中有一名女生,A2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.20.(6分)如图,在平面直角坐标系xOy中,直线y=x﹣2与双曲线y=(k≠0)相交于A,B两点,且点A的横坐标是1.(1)求k的值;(2)过点P(0,n)作直线,使直线与x轴平行,直线与直线y=x﹣2交于点M,与双曲线y=(k≠0)交于点N,若点M在N右边,求n的取值范围.21.(6分)分别用定长为a的线段围成矩形和圆.(1)求围成矩形的面积的最大值;(用含a的式子表示)(2)哪种图形的面积更大?为什么?22.(8分)矩形OABC在平面直角坐标系中的位置如图所示,A、C两点的坐标分别为A(6,0)、C(0,3),直线与BC边相交于点D.(1)求点D的坐标;(2)若抛物线经过A、D两点,试确定此抛物线的解析式;(3)设(2)中的抛物线的对称轴与直线AD交于点M,点P为对称轴上一动点,以P、A、M为顶点的三角形与△ABD相似,求符合条件的所有点P的坐标.23.(8分)解方程:.24.(8分)如图,已知一次函数与反比例函数的图象交于A,B两点.(1)求的面积;(2)观察图象,可知一次函数值小于反比例函数值的x的取值范围是.25.(10分)如图,在直角坐标系中,点A的坐标为(-2,0),OB=OA,且∠AOB=120°.(1)求经过A、O、B三点的抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点C,使△OBC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;(3)若点M为抛物线上一点,点N为对称轴上一点,是否存在点M、N使得A、O、M、N构成的四边形是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.26.(10分)在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+ax+a(a≠0)交x轴于点A和点B(点A在点B左边),交y轴于点C,连接AC,tan∠CAO=1.(1)如图1,求抛物线的解析式;(2)如图2,D是第一象限的抛物线上一点,连接DB,将线段DB绕点D顺时针旋转90°,得到线段DE(点B与点E为对应点),点E恰好落在y轴上,求点D的坐标;(1)如图1,在(2)的条件下,过点D作x轴的垂线,垂足为H,点F在第二象限的抛物线上,连接DF交y轴于点G,连接GH,sin∠DGH=,以DF为边作正方形DFMN,P为FM上一点,连接PN,将△MPN沿PN翻折得到△TPN(点M与点T为对应点),连接DT并延长与NP的延长线交于点K,连接FK,若FK=,求cos∠KDN的值.
参考答案一、选择题(每小题3分,共30分)1、A【分析】在Rt△AOH中,由∠AOC=60°,解直角三角形求得AH=,然后利用垂径定理解答即可.【详解】解:∵OC⊥AB于H,∴AH=BH,在Rt△AOH中,∠AOC=60°,OH=1,∴AH=OH=,∴AB=2AH=2故选:A.【点睛】本题考查了垂径定理以及解直角三角形,难度不大,掌握相关性质定理是解题关键.2、C【解析】试题分析:由题意可得根的判别式,即可得到关于k的不等式,解出即可.由题意得,解得故选C.考点:一元二次方程的根的判别式点评:解答本题的关键是熟练掌握一元二次方程,当时,方程有两个不相等实数根;当时,方程的两个相等的实数根;当时,方程没有实数根.3、A【分析】可以将上字看做有四个端点每次每个端点增加一个,还有两个点在里面不发生变化.找到其规律即可解答.【详解】第1个“上”字中的棋子个数是6;第2个“上”字中的棋子个数是10;第3个“上”字中的棋子个数是14;进一步发现规律:第n个“上”字中的棋子个数是(4n+2).所以第30个“上”字需要4×30+2=122枚棋子.
故选:A.【点睛】此题考查规律型:图形的变化,解题关键是通过归纳与总结,得到其中的规律.4、D【解析】根据二次函数的性质对各选项进行判断.【详解】A、由二次函数的解析式y=(x+1)2+2,可知系数>1,故函数图像开口向上.故A项错误;B、将x=﹣1代入解析式,得到y=6,故B项错误;C、由二次函数的顶点式y=(x+1)2+2可知对称轴为x=1,故C项错误;D、函数的顶点式y=(x+1)2+2可知该函数的顶点坐标是(1,2),故D项正确.故选D.【点睛】本题主要考查二次函数的图像与性质,理解二次函数的顶点式是解答此题的关键.5、C【解析】先根据点(-2,3),在反比例函数y=k的图象上求出k的值,再根据k=xy的特点对各选项进行逐一判断.【详解】∵反比例函数y=kx的图象经过点(﹣2,3)∴k=2×3=-6,A.∵(-6)×(-1)=6≠-6,∴此点不在反比例函数图象上;B.∵1×6=6≠-6,∴此点不在反比例函数图象上;C.∵3×(-2)=-6,∴此点在反比例函数图象上;D.∵3×2=6≠-6,∴此点不在反比例函数图象上。故答案选:C.【点睛】本题考查的知识点是反比例函数图像上点的坐标特点,解题的关键是熟练的掌握反比例函数图像上点的坐标特点.6、C【解析】试题分析:∵DC∥AB,∴∠DCA=∠CAB=65°.∵△ABC绕点A旋转到△AED的位置,∴∠BAE=∠CAD,AC=AD.∴∠ADC=∠DCA="65°."∴∠CAD=180°﹣∠ADC﹣∠DCA="50°."∴∠BAE=50°.故选C.考点:1.面动旋转问题;2.平行线的性质;3.旋转的性质;4.等腰三角形的性质.7、B【分析】过点C作CD⊥AB,利用间接法求出△ABC的面积,利用勾股定理求出AB、BC的长度,然后求出CD的长度,即可得到∠B的度数,然后得到答案.【详解】解:如图,过点C作CD⊥AB,∴,∵,,又∵,∴,在Rt△BCD中,,∴,∴;故选:B.【点睛】本题考查了特殊角的三角函数值,勾股定理与网格问题,解题的关键是作出辅助线正确构造直角三角形,利用三角函数值进行求解.8、D【解析】根据同底等高判断△ABD和△ACD的面积相等,即可得到S1+S2=S3+S2,即【详解】∵△ABD和△ACD同底等高,∴SS1即S△ABC和△DBC同底等高,∴S△ABC∴S故A,B,C正确,D错误.故选:D.【点睛】考查三角形的面积,掌握同底等高的三角形面积相等是解题的关键.9、D【解析】试题分析:设∠A=x,则∠B=3x,∠C=8x,因为四边形ABCD为圆内接四边形,所以∠A+∠C=180°,即:x+8x=180,∴x=20°,则∠A=20°,∠B=60°,∠C=160°,所以∠D=120°,故选D考点:圆内接四边形的性质10、C【解析】按照“左加右减,上加下减”的规律,从而选出答案.【详解】y=2x2向左平移3个单位得到的抛物线的解析式是y=2(x+3)2,故答案选C.【点睛】本题主要考查了抛物线的平移以及抛物线解析式的变换规律,解本题的要点在于熟知“左加右减,上加下减”的变化规律.二、填空题(每小题3分,共24分)11、1【分析】将一元二次方程的根代入即可求出k的值.【详解】解:∵关于的方程的一个根为6∴解得:k=1故答案为:1.【点睛】此题考查的是已知一元二次方程的根,求方程中的参数,掌握方程的解的定义是解决此题的关键.12、【分析】直接利用弧长公式进行计算.【详解】解:由题意得:=,故答案是:【点睛】本题考查了弧长公式,考查了计算能力,熟练掌握弧长公式是关键.13、【分析】根据矩形的对角线相等,利用勾股定理求出对角线的长度,然后根据平行线分线段成比例定理列式表示EF、EH的长度之和,再根据四边形EFGH是平行四边形,即可得解.【详解】解:∵矩形中,,由勾股定理得:,∵EF∥AC,∴,∵EH∥BD,∴,∴,∴,∵EF∥HG,EH∥FG,∴四边形EFGH是平行四边形,∴四边形EFGH的周长=,故答案为:.【点睛】本题考查了平行线分线段成比例定理、矩形的对角线相等和勾股定理,根据平行线分线段成比例定理得出是解题的关键,也是本题的难点.14、3【解析】试题分析:如图,连接AC与BD相交于点O,∵四边形ABCD是菱形,∴AC⊥BD,BO=BD,CO=AC,由勾股定理得,AC==,BD==,所以,BO==,CO==,所以,tan∠DBC===3.故答案为3.考点:3.菱形的性质;3.解直角三角形;3.网格型.15、(3,﹣2)【分析】根据抛物线y=a(x﹣h)2+k的顶点坐标是(h,k)直接写出即可.【详解】解:抛物线y=(x﹣3)2﹣2的顶点坐标是(3,﹣2).故答案为(3,﹣2).【点睛】此题主要考查了二次函数的性质,关键是熟记:抛物线的顶点坐标是,对称轴是.16、【分析】根据二次函数的性质和函数的图象,可以得到该函数图象与轴的另一个交点,从而可以得到一元二次方程的解,本题得以解决.【详解】由图象可得,
抛物线与x轴的一个交点为(1,0),对称轴是直线,
则抛物线与轴的另一个交点为(-3,0),
即当时,,此时方程的解是,
故答案为:.【点睛】本题考查了抛物线与轴的交点、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.17、(5,2)【分析】由∠BAC=90°,可得△ABO≌△CAD,利用全等三角形的性质即可求出点C坐标.【详解】解:∵∠BAC=90°∴∠BAO+∠ABO=∠BAO+∠CAD∴∠ABO=∠CAD,又∵轴,∴∠CDA=90°在△ABO与△CAD中,∠ABO=∠CAD,∠AOB=∠CDA,AB=CA,∴△ABO≌△CAD(AAS)∴OB=AD,设OA=a()∵B(0,3)∴AD=3,∴点C(a+3,a),∵点C在反比例函数图象上,∴,解得:或(舍去)∴点C(5,2),故答案为(5,2)【点睛】本题考查了反比例函数与等腰直角三角形相结合的题型,灵活运用几何知识及反比例函数的图象与性质是解题的关键.18、【分析】作高线DE,利用勾股定理求出AD,AB的值,然后证明,求DE的长,再利用三角函数定义求解即可.【详解】过点D作于E∵点是边的中点,∴,在中,由∴∴由勾股定理得∵∴∵∴∴∴∴∴故答案为:.【点睛】本题考查了三角函数的问题,掌握勾股定理和锐角三角函数的定义是解题的关键.三、解答题(共66分)19、(1)15人;(2)补图见解析.(3).【分析】(1)根据三班有6人,占的百分比是40%,用6除以所占的百分比即可得总人数;(2)用总人数减去一、三、四班的人数得到二班的人数即可补全条形图,用一班所占的比例乘以360°即可得A1所在扇形的圆心角的度数;(3)根据题意画出树状图,得出所有可能,进而求恰好选出一名男生和一名女生的概率.【详解】解:(1)七年级已“建档立卡”的贫困家庭的学生总人数:6÷40%=15人;(2)A2的人数为15﹣2﹣6﹣4=3(人)补全图形,如图所示,A1所在圆心角度数为:×360°=48°;(3)画出树状图如下:共6种等可能结果,符合题意的有3种∴选出一名男生一名女生的概率为:P=.【点睛】本题考查了条形图与扇形统计图,概率等知识,准确识图,从图中发现有用的信息,正确根据已知画出树状图得出所有可能是解题关键.20、(1)k=1;(2)n>1或﹣1<n<2.【分析】(1)把点A的横坐标代入一次函数解析式求出纵坐标,确定出点A的坐标,代入反比例解析式求出k的值即可;
(2)根据题意画出直线,根据图象确定出点M在N右边时n的取值范围即可.【详解】解:(1)令x=1,代入y=x﹣2,则y=1,∴A(1,1),∵点A(1,1)在双曲线y=(k≠2)上,∴k=1;(2)联立得:,解得或,即B(﹣1,﹣1),如图所示:当点M在N右边时,n的取值范围是n>1或﹣1<n<2.【点睛】此题考查了一次函数与反比例函数的交点问题,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.21、(1)矩形面积的最大值为;(2)圆的面积大.【分析】(1)设矩形的一边长为b,则另外一边长为b,由S矩形=b(b)=﹣(b)2可得答案;(2)设圆的半径为r,则r,知S圆=πr2,比较大小即可得.【详解】(1)设矩形的一边长为b,则另外一边长为b,S矩形=b(b)=﹣(b)2,∴矩形面积的最大值为;(2)设圆的半径为r,则r,S圆=πr2.∵4π<16,∴,∴S圆>S矩,∴圆的面积大.【点睛】本题考查了列代数式与二次函数的最值,用到的知识点是圆的面积公式、矩形的面积公式、二次函数的最值,关键是根据题意列出代数式.22、(3)点D的坐标为(3,3);(3)抛物线的解析式为;(3)符合条件的点P有两个,P3(3,0)、P3(3,-4).【分析】(3)有题目所给信息可以知道,BC线上所有的点的纵坐标都是3,又有D在直线上,代入后求解可以得出答案.(3)A、D,两点坐标已知,把它们代入二次函数解析式中,得出两个二元一次方程,联立求解可以得出答案.(3)由题目分析可以知道∠B=90°,以P、A、M为顶点的三角形与△ABD相似,所以应有∠APM、∠AMP或者∠MAP等于90°,很明显∠AMP不可能等于90°,所以有两种情况.【详解】(3)∵四边形OABC为矩形,C(0,3)∴BC∥OA,点D的纵坐标为3.∵直线与BC边相交于点D,∴.∴点D的坐标为(3,3).(3)∵若抛物线经过A(6,0)、D(3,3)两点,∴解得:,∴抛物线的解析式为(3)∵抛物线的对称轴为x=3,设对称轴x=3与x轴交于点P3,∴BA∥MP3,∴∠BAD=∠AMP3.①∵∠AP3M=∠ABD=90°,∴△ABD∽△AMP3.∴P3(3,0).②当∠MAP3=∠ABD=90°时,△ABD∽△MAP3.∴∠AP3M=∠ADB∵AP3=AB,∠AP3P3=∠ABD=90°∴△AP3P3≌△ABD∴P3P3=BD=4∵点P3在第四象限,∴P3(3,-4).∴符合条件的点P有两个,P3(3,0)、P3(3,-4).23、,【解析】试题分析:运用配方法求解即可.试题解析:故:,考点:解一元二次方程-配方法.24、(1)4;(1)或【分析】(1)首先解一次函数与反比例函数的解析式组成的方程组即可求得A和B的坐标;然后求得AB和x轴的交点,然后根据S△AOB=S△AOC+S△OBC即可求解;(1)一次函数值小于反比例函数值,即对相同的x的值,一次函数的图象在反比例函数的图象的下边,据此即可求得x的范围.【详解】解:(1)解方程组,即,解得:x=3或−1,则或,∴A(3,1),B(−1,−3);设一次函数与x轴的交点为C,如下图:在y=x−1中,令y=0,解得:x=1,则C的坐标是(1,0),则OC=1.∴S△AOB=S△AOC+S△OBC=;(1)根据图象所示:当或时,一次函数图象在反比例函数图象的下边,此时一次函数值小于反比例函数值,故答案为:或.【点睛】本题考查一次函数与反比例函数的有关知识,掌握用方程组求交点坐标,求三角形面积时关键找到特殊点,用分割法解决面积问题,属于中考常考题型.25、(1);(2)(-1,);(3)M1(-1,-),M2(-3,),M3(1,).【解析】(1)先确定出点B坐标,再用待定系数法即可;(2)先判断出使△BOC的周长最小的点C的位置,再求解即可;(3)分OA为对角线、为边这两种情况进行讨论计算即可得出答案.【详解】(1)如图所示,过点B作BD⊥x轴于点D,∵点A的坐标为(-2,0),OB=OA,∴OB=OA=2,∵∠AOB=120°,∴∠BOD=60°,在Rt△OBD中,∠ODB=90°,∴∠OBD=30°,∴OD=1,DB=,∴点B的坐标是(1,),设所求抛物线的解析式为y=ax2+bx+c,由已知可得:,解得:∴所求抛物线解析式为;(2)存在.如图所示,∵△BOC的周长=OB+BC+CO,又∵OB=2,∴要使△BOC的周长最小,必须BC+CO最小,∵点O和点A关于对称轴对称,∴连接AB与对称轴的交点即为点C,由对称可知,OC=OA,此时△BOC的周长=OB+BC+CO=OB+BC+AC;点C为直线AB与抛物线对称轴的交点,设直线AB的解析式为y=kx+b,将点A(−2,0),B(1,)分别代入,得:,解得:,∴直线AB的解析式为y=x+,当x=−1时,y=,∴所求点C的坐标为(−1,);(3)如图所示,①当以OA为对角线时,∵OA与MN互相垂直且平分,∴点M1(−1,−),②当以OA为边时,∵OA=MN且OA∥MN,即MN=2,MN∥x轴,设N(−1,t),则M(−3,t)或(1,t)将M点坐标代入,解得,t=,∴M2(−3,),M3(1,)综上:点M的坐标为:(-1,-),或(-3,)或(1,).【点睛】本题是一道二次函数综合题,主要考查了二次函数的性质、最短路径、平行四边形等知识.综合运用所学知识,并进行分类讨论是解题的关键.26、(1)y=﹣x2+x+1;(2)D的坐标为(1,1);(1)【分析】(1)通过抛物线y=先求出点A的坐标,推出OA的长度,再由tan∠CAO=1求出OC的长度,点C的坐标,代入原解析式即可求出结论;(2)如图2,过点D分别作x轴和y轴的垂线,垂足分别为W和Z,证△DZE≌△DWB,得到DZ=DW,由此可知点D的横纵坐标相等,设出点D坐标,代入抛物线解析式即可求出点D坐标;(1)如图1,连接CD,分别过点C,H作F的垂线,垂足分别为Q,I,过点F作DC的垂线,交DC的延长线于点U,先求出点G坐标,求出直线DG解析式,再求出点F的坐标,即可求出正方形FMND的边长,再求出其对角线FN的长度,最后证点F,K,M,N,D共圆,推出∠KDN=∠KFN,求出∠KFN的余弦值即可.【详解】解:(1)在抛物线y=中,当y=0时,x1=﹣1,x2=4,∴A(﹣1,0),B(4,0),∴OA=1,∵tan∠CAO=1,∴OC=1OA=1,∴C(0,1),∴a=1,∴a=2,∴抛物线的解析式为:y=﹣x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 出租车行业劳动合同与租赁合同解析通则
- 标准劳动合同简易模板
- 吊篮采购合同参考范本
- Module 1 Unit 1 Hello!(教学设计)-2024-2025学年外研版(一起)英语一年级上册
- 企业股权转让法律合同
- 度购物中心户外广告牌制作安装合同
- 技术转让与许可合同样本
- 计划生育政策变动导致的劳动合同终止范本
- 交通建设合同转让协议书
- 9 明天要远足(教学设计)2024-2025学年-统编版语文一年级上册
- 胶带输送机司机培训
- 市政工程旁站监理方案
- 马工程-公共财政概论-课程教案
- 千年菩提路解说词
- 渗透检测报告
- DB4401-T 1-2018老年人照顾需求等级评定规范-(高清现行)
- 值班、交接班制度课件
- 领导干部道德修养1
- 房地产现金流量表
- 《ANSYS有限元基础》课程教学大纲
- 国内外创造性思维培养模式的对比研究综述
评论
0/150
提交评论