2023年辽宁省鞍山市名校九年级数学第一学期期末经典模拟试题含解析_第1页
2023年辽宁省鞍山市名校九年级数学第一学期期末经典模拟试题含解析_第2页
2023年辽宁省鞍山市名校九年级数学第一学期期末经典模拟试题含解析_第3页
2023年辽宁省鞍山市名校九年级数学第一学期期末经典模拟试题含解析_第4页
2023年辽宁省鞍山市名校九年级数学第一学期期末经典模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年辽宁省鞍山市名校九年级数学第一学期期末经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.抛物线的顶点坐标是()A.(2,1) B. C. D.2.如图是我们学过的反比例函数图象,它的表达式可能是()A. B. C. D.3.函数的图象如图所示,那么函数的图象大致是()A. B. C. D.4.把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线的解析式为()A. B.C. D.5.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到红灯的概率是()A. B. C. D.16.如图,在平行四边形中,为延长线上一点,且,连接交于,则△与△的周长之比为()A.9:4 B.4:9C.3:2 D.2:37.如图是某零件的模型,则它的左视图为()A. B. C. D.8.反比例函数的图象分布的象限是()A.第一、三象限 B.第二、四象限 C.第一象限 D.第二象限9.已知二次函数y=x2﹣2x+m(m为常数)的图象与x轴的一个点为(3,0),则关于x的一元二次方程x2﹣2x+m=0的两个实数根是()A.x1=﹣1,x2=3 B.x1=1,x2=3 C.x1=﹣1,x2=1 D.x1=3,x2=﹣510.如图,已知⊙O的直径为4,∠ACB=45°,则AB的长为()A.4 B.2 C.4 D.2二、填空题(每小题3分,共24分)11.如图,分别为矩形的边,的中点,若矩形与矩形相似,则相似比等于__________.12.如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④若(-,y1),(,y2)是抛物线上两点,则y1<y2,其中结论正确的是________.13.在一个不透明的袋子中装有除颜色外其余均相同的7个小球,其中红球2个,黑球5个,若再放入m个一样的黑球并摇匀,此时,随机摸出一个球是黑球的概率等于,则m的值为.14.如图,圆是一个油罐的截面图,已知圆的直径为5,油的最大深度(),则油面宽度为__________.15.如图,折叠长方形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,则EF=________.16.在一个不透明的袋子中装有除颜色外完全相同的3个白球、若干红球,从中随机摸取1个球,摸到红球的概率是,则这个袋子中有红球_____个.17.如图,直线y=x﹣2与x轴、y轴分别交于点A和点B,点C在直线AB上,且点C的纵坐标为﹣1,点D在反比例函数y=的图象上,CD平行于y轴,S△OCD=,则k的值为________.18.如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是______.三、解答题(共66分)19.(10分)计算:+2﹣1﹣2cos60°+(π﹣3)020.(6分)如图,中,,,面积为1.(1)尺规作图:作的平分线交于点;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,求出点到两条直角边的距离.21.(6分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于C点,OA=2,OC=6,连接AC和BC.(1)求抛物线的解析式;(2)点D在抛物线的对称轴上,当△ACD的周长最小时,求点D的坐标;(3)点E是第四象限内抛物线上的动点,连接CE和BE.求△BCE面积的最大值及此时点E的坐标;22.(8分)如图1,过原点的抛物线与轴交于另一点,抛物线顶点的坐标为,其对称轴交轴于点.(1)求抛物线的解析式;(2)如图2,点为抛物线上位于第一象限内且在对称轴右侧的一个动点,求使面积最大时点的坐标;(3)在对称轴上是否存在点,使得点关于直线的对称点满足以点、、、为顶点的四边形为菱形.若存在,请求出点的坐标;若不存在,请说明理由.23.(8分)抛物线的图像与轴的一个交点为,另一交点为,与轴交于点,对称轴是直线.(1)求该二次函数的表达式及顶点坐标;(2)画出此二次函数的大致图象;利用图象回答:当取何值时,?(3)若点在抛物线的图像上,且点到轴距离小于3,则的取值范围为;24.(8分)已知:如图,AE∥CF,AB=CD,点B、E、F、D在同一直线上,∠A=∠C.求证:(1)AB∥CD;(2)BF=DE.25.(10分)在一个不透明的盒子中装有4张卡片,4张卡片的正面分别标有数字1、2、3、4,这些卡片除数字外都相同,将卡片搅匀.(1)从盒子任意抽取一张卡片,恰好抽到标有奇数卡片的概率是;(2)先从盒子中任意抽取一张卡片,再从余下的3张卡片中任意抽取一张卡片,求抽取的2张卡片标有数字之和大于5的概率(请用画树状图或列表等方法求解).26.(10分)如图,在平面直角坐标系中,抛物线过点,动点P在线段上以每秒2个单位长度的速度由点运动到点停止,设运动时间为,过点作轴的垂线,交直线于点,交抛物线于点.连接,是线段的中点,将线段绕点逆时针旋转得线段.(1)求抛物线的解析式;(2)连接,当为何值时,面积有最大值,最大值是多少?(3)当为何值时,点落在抛物线上.

参考答案一、选择题(每小题3分,共30分)1、D【分析】根据抛物线顶点式解析式直接判断即可.【详解】解:抛物线解析式为:,∴抛物线顶点坐标为:(﹣2,1)故选:D.【点睛】此题根据抛物线顶点式解析式求顶点坐标,掌握顶点式解析式的各项的含义是解此题的关键.2、B【分析】根据反比例函数图象可知,经过第一三象限,,从而得出答案.【详解】解:A、为二次函数表达式,故A选项错误;B、为反比例函数表达式,且,经过第一三象限,符合图象,故B选项正确;C、为反比例函数表达式,且,经过第二四象限,不符合图象,故C选项错误;D、为一次函数表达式,故D选项错误.故答案为B.【点睛】本题考查了反比例函数的图象的识别,掌握反比例函数的图象与性质是解题的关键.3、D【解析】首先由反比例函数的图象位于第二、四象限,得出k<0,则-k>0,所以一次函数图象经过第二四象限且与y轴正半轴相交.【详解】解:反比例函数的图象在第二、四象限,函数的图象应经过第一、二、四象限.故选D.【点睛】本题考查的知识点:

(1)反比例函数的图象是双曲线,当k<0时,它的两个分支分别位于第二、四象限.

(2)一次函数y=kx+b的图象当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限.4、C【分析】根据抛物线的平移规律:上加下减,左加右减解答即可.【详解】解:把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线的解析式为:.故选:C.【点睛】此题考查了抛物线的平移,属于基本题型,熟知抛物线的平移规律是解答的关键.5、C【分析】根据随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数,据此用红灯亮的时间除以以上三种灯亮的总时间,即可得出答案.【详解】解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴红灯的概率是:.故答案为:C.【点睛】本题考查的知识点是简单事件的概率问题,熟记概率公式是解题的关键.6、C【分析】由题意可证△ADF∽△BEF可得△ADF与△BEF的周长之比=,由可得,即可求出△ADF与△BEF的周长之比.【详解】∵四边形ABCD是平行四边形,∴,AD=BC,∵∴即∵,∴△ADF∽△BEF∴△ADF与△BEF的周长之比=.故选:C.【点睛】本题考查了相似三角形的性质和判定,平行四边形的性质,利用相似三角形周长的比等于相似比求解是解本题的关键.7、D【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中.【详解】从左面看去,是两个有公共边的矩形,如图所示:故选:D.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.8、A【解析】先根据反比例函数的解析式判断出k的符号,再根据反比例函数的性质即可得出结论.【详解】解:∵反比例函数y=中,k=2>0,

∴反比例函数y=的图象分布在一、三象限.

故选:A.【点睛】本题考查的是反比例函数的性质,熟知反比例函数y=(k≠0)中,当k>0时,反比例函数图象的两个分支分别位于一三象限是解答此题的关键.9、A【分析】利用抛物线的对称性确定抛物线与x轴的另一个点为(﹣1,0),然后利用抛物线与x轴的交点问题求解.【详解】解:∵抛物线的对称轴为直线x=﹣=1,而抛物线与x轴的一个点为(1,0),∴抛物线与x轴的另一个点为(﹣1,0),∴关于x的一元二次方程x2﹣2x+m=0的两个实数根是x1=﹣1,x2=1.故选:A.【点睛】本题考查了抛物线与轴的交点:把求二次函数,,是常数,与轴的交点坐标问题转化为解关于的一元二次方程.也考查了二次函数的性质.10、D【分析】连接OA、OB,根据同弧所对的圆周角是圆心角的一半,即可求出∠AOB=90°,再根据等腰直角三角形的性质即可求出AB的长.【详解】连接OA、OB,如图,∵∠AOB=2∠ACB=2×45°=90°,∴△AOB为等腰直角三角形,∴AB=OA=2.故选:D.【点睛】此题考查的是圆周角定理和等腰直角三角形的性质,掌握同弧所对的圆周角是圆心角的一半是解决此题的关键.二、填空题(每小题3分,共24分)11、(或)【分析】根据矩形的性质可得EF=AB=CD,AE=AD=BC,根据相似的性质列出比例式,即可得出,从而求出相似比.【详解】解:∵分别为矩形的边,的中点,∴EF=AB=CD,AE=AD=BC,∵矩形与矩形相似∴∴∴∴相似比=(或)故答案为:(或).【点睛】此题考查的是求相似多边形的相似比,掌握相似多边形的性质是解决此题的关键.12、②④【解析】由抛物线开口方向得到a<0,有对称轴方程得到b=-2a>0,由∵抛物线与y轴的交点位置得到c>0,则可对①进行判断;由b=-2a可对②进行判断;利用抛物线的对称性可得到抛物线与x轴的另一个交点为(3,0),则可判断当x=2时,y>0,于是可对③进行判断;通过比较点(-,y1)与点(,y2)到对称轴的距离可对④进行判断.【详解】:∵抛物线开口向下,

∴a<0,

∵抛物线的对称轴为直线x=-=1,

∴b=-2a>0,

∵抛物线与y轴的交点在x轴上方,

∴c>0,

∴abc<0,所以①错误;

∵b=-2a,

∴2a+b=0,所以②正确;

∵抛物线与x轴的一个交点为(-1,0),抛物线的对称轴为直线x=1,

∴抛物线与x轴的另一个交点为(3,0),

∴当x=2时,y>0,

∴4a+2b+c>0,所以③错误;

∵点(-,y1)到对称轴的距离比点(,y2)对称轴的距离远,

∴y1<y2,所以④正确.

故答案为:②④.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.13、1.【解析】试题分析:根据题意得:=,解得:m=1.故答案为1.考点:概率公式.14、1【分析】连接OA,先求出OA和OD,再根据勾股定理和垂径定理即可求出AD和AB.【详解】解:连接OA∵圆的直径为5,油的最大深度∴OA=OC=∴OD=CD-OC=∵根据勾股定理可得:AD=∴AB=2AD=1m故答案为:1.【点睛】此题考查的是垂径定理和勾股定理,掌握垂径定理和勾股定理的结合是解决此题的关键.15、5cm【分析】先求出BF、CF的长,利用勾股定理列出关于EF的方程,即可解决问题.【详解】∵四边形ABCD为矩形,∴∠B=∠C=90°;由题意得:AF=AD=BC=10,ED=EF,设EF=x,则EC=8−x;由勾股定理得:BF2=AF2−AB2=36,∴BF=6,CF=10−6=4;由勾股定理得:x2=42+(8−x)2,解得:x=5,故答案为:5cm.【点睛】该题主要考查了翻折变换及其应用问题;解题的关键是灵活运用勾股定理等几何知识来分析、判断、推理或解答.16、1【解析】解:设红球有n个由题意得:,解得:n=1.故答案为=1.17、1【详解】试题分析:把x=2代入y=x﹣2求出C的纵坐标,得出OM=2,CM=1,根据CD∥y轴得出D的横坐标是2,根据三角形的面积求出CD的值,求出MD,得出D的纵坐标,把D的坐标代入反比例函数的解析式求出k即可.解:∵点C在直线AB上,即在直线y=x﹣2上,C的横坐标是2,∴代入得:y=×2﹣2=﹣1,即C(2,﹣1),∴OM=2,∵CD∥y轴,S△OCD=,∴CD×OM=,∴CD=,∴MD=﹣1=,即D的坐标是(2,),∵D在双曲线y=上,∴代入得:k=2×=1.故答案为1.考点:反比例函数与一次函数的交点问题.点评:本题考查了反比例函数与一次函数的交点问题、一次函数、反比例函数的图象上点的坐标特征、三角形的面积等知识点,通过做此题培养了学生的计算能力和理解能力,题目具有一定的代表性,是一道比较好的题目.18、1【分析】首先证明AB=AC=a,根据条件可知PA=AB=AC=a,求出⊙D上到点A的最大距离即可解决问题.【详解】∵A(1,0),B(1﹣a,0),C(1+a,0)(a>0),∴AB=1﹣(1﹣a)=a,CA=a+1﹣1=a,∴AB=AC,∵∠BPC=90°,∴PA=AB=AC=a,如图延长AD交⊙D于P′,此时AP′最大,∵A(1,0),D(4,4),∴AD=5,∴AP′=5+1=1,∴a的最大值为1.故答案为1.【点睛】圆外一点到圆上一点的距离最大值为点到圆心的距离加半径,最小值为点到圆心的距离减去半径.三、解答题(共66分)19、【分析】本题涉及零指数幂、负整数指数幂、特殊三角函数值、二次根式化简等考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【详解】解:原式=3+﹣2×+1=【点睛】本题是一道关于零指数幂、负整数指数幂、特殊三角函数值、二次根式化简等知识点的计算题目,熟记各知识点是解题的关键.20、(1)见解析;(2)【分析】(1)利用尺规作图的步骤作出∠ACB的平分线交AB于点D即可;

(2)作于E,于F,根据面积求出BC的长.法一:根据角平分线的性质得出DE=DF,从而得出四边形CEDF为正方形.再由,得出,列方程可以求出结果;法二:根据,利用面积法可求得DE,DF的值.【详解】解:(1)∠ACB的平分线CD如图所示:(2)已知,面积为1,∴.法一:作,,∵是角平分线,∴,,而,∴四边形为正方形.设为,则由,∴,∴.即,得.∴点到两条直角边的距离为.法二:,即,又由(1)知AC=15,BC=20,∴,∴.故点到两条直角边的距离为.【点睛】本题考查了尺规作图,角平分线的性质,直角三角形的面积等知识,解题的关键是熟练掌握基本性质,属于中考常考题型.21、(1)y=x2﹣x﹣6;(2)点D的坐标为(,﹣5);(3)△BCE的面积有最大值,点E坐标为(,﹣).【分析】(1)先求出点A,C的坐标,再将其代入y=x2+bx+c即可;(2)先确定BC交对称轴于点D,由两点之间线段最短可知,此时AD+CD有最小值,而AC的长度是定值,故此时△ACD的周长取最小值,求出直线BC的解析式,再求出其与对称轴的交点即可;(3)如图2,连接OE,设点E(a,a2﹣a﹣6),由式子S△BCE=S△OCE+S△OBE﹣S△OBC即可求出△BCE的面积S与a的函数关系式,由二次函数的图象及性质可求出△BCE的面积最大值,并可写出此时点E坐标.【详解】解:(1)∵OA=2,OC=6,∴A(﹣2,0),C(0,﹣6),将A(﹣2,0),C(0,﹣6)代入y=x2+bx+c,得,解得,b=﹣1,c=﹣6,∴抛物线的解析式为:y=x2﹣x﹣6;(2)在y=x2﹣x﹣6中,对称轴为直线x=,∵点A与点B关于对称轴x=对称,∴如图1,可设BC交对称轴于点D,由两点之间线段最短可知,此时AD+CD有最小值,而AC的长度是定值,故此时△ACD的周长取最小值,在y=x2﹣x﹣6中,当y=0时,x1=﹣2,x2=3,∴点B的坐标为(3,0),设直线BC的解析式为y=kx﹣6,将点B(3,0)代入,得,k=2,∴直线BC的解析式为y=2x﹣6,当x=时,y=﹣5,∴点D的坐标为(,﹣5);(3)如图2,连接OE,设点E(a,a2﹣a﹣6),S△BCE=S△OCE+S△OBE﹣S△OBC=×6a+×3(﹣a2+a+6)﹣×3×6=﹣a2+a=﹣(a﹣)2+,根据二次函数的图象及性质可知,当a=时,△BCE的面积有最大值,当a=时,∴此时点E坐标为(,﹣).【点睛】本题考查的是二次函数的综合,难度适中,第三问解题关键是找出面积与a的关系式,再利用二次函数的图像与性质求最值.22、(1);(2);(3)点的坐标为或【分析】(1)设出抛物线的顶点式,将顶点C的坐标和原点坐标代入即可;(2)先求出点A的坐标,再利用待定系数法求出AC的解析式,过点作轴交于点,设,则,然后利用“铅垂高,水平宽”即可求出面积与m的关系式,利用二次函数求最值,即可求出此时点D的坐标;(3)先证出为等边三角形,然后根据P点的位置和菱形的顶点顺序分类讨论:①当点与点重合时,易证:四边形是菱形,即可求出此时点P的坐标;②作点关于轴的对称点,当点与点重合时,易证:四边形是菱形,先求出,再根据锐角三角函数即可求出BP,从而求出此时点P的坐标.【详解】(1)解:设抛物线解析式为,∵顶点∴又∵图象过原点∴解出:∴即(2)令,即,解出:或∴设直线AC的解析式为y=kx+b将点,的坐标代入,可得解得:∴过点作轴交于点,设,则∴∴∴当时,有最大值当时,∴(3)∵,,∴∴∴为等边三角形①当点与点重合时,∴四边形是菱形∴②作点关于轴的对称点,当点与点重合时,∴四边形是菱形∴点是的角平分线与对称轴的交点,∴,∵,.在Rt△OBP中,∴综上所述,点的坐标为或【点睛】此题考查的是二次函数与图形的综合大题,掌握用待定系数法求二次函数的解析式、利用“铅垂高,水平宽”求面积的最值、菱形的判定定理和分类讨论是数学思想是解决此题的关键.23、(1),;(2)见解析,或;(3)【分析】(1)根据图像对称轴是直线,得到,再将,代入解析式,得到关于a、b、c的方程组,即可求得系数,得到解析式,再求出顶点坐标即可;(2)根据特定点画出二次函数的大致图象,根据二次函数与不等式的关系,即可得到对应的x的取值范围.(3)求出当时,当时,y的值,即可求出的取值范围.【详解】(1)因为图像对称轴是直线,所以,将,代入解析式,得:由题知,解得,所以解析式为:;当时,,所以顶点坐标.(2)二次函数的大致图象:当或,.(3)当时,得,当时,得,所以y取值范围为,即的取值范围为.【点睛】本题考查了待定系数法的求解析式、二元一次方程与不等式的关系,本题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论