2023年黑龙江省鹤岗市名校数学九上期末质量跟踪监视试题含解析_第1页
2023年黑龙江省鹤岗市名校数学九上期末质量跟踪监视试题含解析_第2页
2023年黑龙江省鹤岗市名校数学九上期末质量跟踪监视试题含解析_第3页
2023年黑龙江省鹤岗市名校数学九上期末质量跟踪监视试题含解析_第4页
2023年黑龙江省鹤岗市名校数学九上期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年黑龙江省鹤岗市名校数学九上期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,已知A(2,1),现将A点绕原点O逆时针旋转90°得到A1,则A1的坐标是()A.(﹣1,2) B.(2,﹣1) C.(1,﹣2) D.(﹣2,1)2.如图,中,内切圆和边、、分别相切于点、、,若,,则的度数是()A. B. C. D.3.已知正比例函数y=kx的图象经过第二、四象限,则一次函数y=kx﹣k的图象可能是图中的()A. B.C. D.4.如图,在平面直角坐标系中,半径为2的圆P的圆心P的坐标为(﹣3,0),将圆P沿x轴的正方向平移,使得圆P与y轴相切,则平移的距离为()A.1 B.3 C.5 D.1或55.抛物线与y轴的交点坐标是()A.(4,0) B.(-4,0) C.(0,-4) D.(0,4)6.若关于x的一元二次方程有实数根,则实数k的取值范围是()A. B. C.且 D.7.如图,直线AB、BC、CD分别与⊙O相切于E、F、G,且AB∥CD,若BO=6cm,OC=8cm则BE+CG的长等于()A.13 B.12 C.11 D.108.如图,平行四边形ABCD中,EF∥BC,AE:EB=2:3,EF=4,则AD的长为()A. B.8 C.10 D.169.剪纸是中国特有的民间艺术.在如图所示的四个剪纸图案中.既是轴对称图形又是中心对称图形的是()A. B. C. D.10.已知函数的部分图像如图所示,若,则的取值范围是()A. B. C. D.二、填空题(每小题3分,共24分)11.已知以线段AC为对角线的四边形ABCD(它的四个顶点A,B,C,D按顺时针方向排列)中,AB=BC=CD,∠ABC=100°,∠CAD=40°,则∠BCD的度数为____________.12.在直角坐标系中,点A(-7,)关于原点对称的点的坐标是_____.13.将抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.14.抛物线y=x2﹣4x的对称轴为直线_____.15.建国70周年阅兵式中,三军女兵方队共352人,其中领队2人,方队中,每排的人数比排数多11,则女兵方队共有____________排,每排有__________人.16.对于任何实数,,,,我们都规定符号的意义是,按照这个规定请你计算:当时,的值为________.17.若抛物线y=2x2+6x+m与x轴有两个交点,则m的取值范围是_____.18.公元前3世纪,古希腊科学家阿基米德发现了杠杆平衡,后来人们归纳出为“杠杆原理”.已知,手压压水井的阻力和阻力臂分别是90和0.3,则动力(单位:)与动力臂(单位:)之间的函数解析式是__________.三、解答题(共66分)19.(10分)如图,Rt△ABC中,∠BAC=90°,AB=2,AC=4,D是BC边上一点,且BD=CD,G是BC边上的一动点,GE∥AD分别交直线AC,AB于F,E两点.(1)AD=;(2)如图1,当GF=1时,求的值;(3)如图2,随点G位置的改变,FG+EG是否为一个定值?如果是,求出这个定值,如果不是,请说明理由.20.(6分)如图,的直径,半径,为上一动点(不包括两点),,垂足分别为.(1)求的长.(2)若点为的中点,①求劣弧的长度,②者点为直径上一动点,直接写出的最小值.21.(6分)如图,菱形ABCD中,∠B=60°,AB=3cm,过点A作∠EAF=60°,分别交DC,BC的延长线于点E,F,连接EF.(1)如图1,当CE=CF时,判断△AEF的形状,并说明理由;(2)若△AEF是直角三角形,求CE,CF的长度;(3)当CE,CF的长度发生变化时,△CEF的面积是否会发生变化,请说明理由.22.(8分)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线,且抛物线经过B(1,0),C(0,3)两点,与x轴交于点A.(1)求抛物线的解析式;(2)如图1,在抛物线的对称轴直线上找一点M,使点M到点B的距离与到点C的距离之和最小,求出点M的坐标;(3)如图2,点Q为直线AC上方抛物线上一点,若∠CBQ=45°,请求出点Q坐标.23.(8分)如图,在由边长为1个单位长度的小正方形组成的网格图中,△ABC的顶点都在网格线交点上.(1)图中AC边上的高为个单位长度;(2)只用没有刻度的直尺,在所给网格图中按如下要求画图(保留必要痕迹):①以点C为位似中心,把△ABC按相似比1:2缩小,得到△DEC;②以AB为一边,作矩形ABMN,使得它的面积恰好为△ABC的面积的2倍.24.(8分)为推进“全国亿万学生阳光体育运动”的实施,组织广大同学开展健康向上的第二课堂活动.我市某中学准备组建球类社团(足球、篮球、羽毛球、乒乓球)、舞蹈社团、健美操社团、武术社团,为了解在校学生对这4个社团活动的喜爱情况,该校随机抽取部分初中生进行了“你最喜欢哪个社团”调查,依据相关数据绘制成以下不完整的统计表,请根据图表中的信息解答下列问题:(1)求样本容量及表格中、的值;(2)请补全统计图;(3)被调查的60个喜欢球类同学中有3人最喜欢足球,若该校有3000名学生,请估计该校最喜欢足球的人数.25.(10分)体育文化公司为某学校捐赠甲、乙两种品牌的体育器材,甲品牌有A、B、C三种型号,乙品牌有D、E两种型号,现要从甲、乙两种品牌的器材中各选购一种型号进行捐赠.

(1)下列事件是不可能事件的是.A.选购乙品牌的D型号B.既选购甲品牌也选购乙品牌C.选购甲品牌的A型号和乙品牌的D型号D.只选购甲品牌的A型号(2)写出所有的选购方案(用列表法或树状图);(3)如果在上述选购方案中,每种方案被选中的可能性相同,那么A型器材被选中的概率是多少?26.(10分)如图,抛物线y=-x2+bx+c与x轴交于点A(-1,0),与y轴交于点B(0,2),直线y=x-1与y轴交于点C,与x轴交于点D,点P是线段CD上方的抛物线上一动点,过点P作PF垂直x轴于点F,交直线CD于点E,(1)求抛物线的解析式;(2)设点P的横坐标为m,当线段PE的长取最大值时,解答以下问题.①求此时m的值.②设Q是平面直角坐标系内一点,是否存在以P、Q、C、D为顶点的平行四边形?若存在,直接写出点Q的坐标;若不存在,请说明理由.

参考答案一、选择题(每小题3分,共30分)1、A【解析】根据点(x,y)绕原点逆时针旋转90°得到的坐标为(-y,x)解答即可.【详解】已知A(2,1),现将A点绕原点O逆时针旋转90°得到A1,所以A1的坐标为(﹣1,2).故选A.【点睛】本题考查的是旋转的性质,熟练掌握坐标的旋转是解题的关键.2、D【分析】连接IE,IF,先利用三角形内角和定理求出的度数,然后根据四边形内角和求出的度数,最后利用圆周角定理即可得出答案.【详解】连接IE,IF∵,∵I是内切圆圆心∴故选:D.【点睛】本题主要考查三角形内角和定理,四边形内角和,圆周角定理,掌握三角形内角和定理,四边形内角和,圆周角定理是解题的关键.3、A【分析】根据正比例函数y=kx的图象经过第二、四象限可判断出k的符号,进而可得出结论.【详解】解:∵正比例函数y=kx的图象经过第二、四象限,∴k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过第一、二、四象限.故选:A.【点睛】本题考查的是一次函数的图象与系数的关系,先根据题意判断出k的符号是解答此题的关键.4、D【分析】分圆P在y轴的左侧与y轴相切、圆P在y轴的右侧与y轴相切两种情况,根据切线的判定定理解答.【详解】当圆P在y轴的左侧与y轴相切时,平移的距离为3-2=1,当圆P在y轴的右侧与y轴相切时,平移的距离为3+2=5,故选D.【点睛】本题考查的是切线的判定、坐标与图形的变化-平移问题,掌握切线的判定定理是解题的关键,解答时,注意分情况讨论思想的应用.5、D【解析】试题分析:求图象与y轴的交点坐标,令x=0,求y即可.当x=0时,y=4,所以y轴的交点坐标是(0,4).故选D.考点:二次函数图象上点的坐标特征.6、C【分析】根据方程根的情况可以判定其根的判别式的取值范围,进而可以得到关于k的不等式,解得即可,同时还应注意二次项系数不能为1.【详解】∵关于x的一元二次方程有实数根,∴△=b2-4ac≥1,即:1+3k≥1,解得:,∵关于x的一元二次方程kx2-2x+1=1中k≠1,故选:C.【点睛】本题考查了一元二次方程根的判别式,解题的关键是了解根的判别式如何决定一元二次方程根的情况.7、D【解析】根据切线长定理得:BE=BF,CF=CG,∠OBF=∠OBE,∠OCF=∠OCG;∵AB∥CD,∴∠ABC+∠BCD=180°,∴∠OBF+∠OCF=90°,∴∠BOC=90°,∵OB=6cm,OC=8cm,∴BC=10cm,∴BE+CG=BC=10cm,故选D.【点睛】本题主要考查了切线长定理,涉及到平行线的性质、勾股定理等,求得BC的长是解题的关键.8、C【分析】根据平行于三角形一边的直线和其他两边相交,所截得的三角形与原三角形相似,可证明△AEF∽△ABC,再根据相似三角形的对应边成比例可解得BC的长,而在▱ABCD中,AD=BC,问题得解.【详解】解:∵EF∥BC∴△AEF∽△ABC,∴EF:BC=AE:AB,∵AE:EB=2:3,∴AE:AB=2:5,∵EF=4,∴4:BC=2:5,∴BC=1,∵四边形ABCD是平行四边形,∴AD=BC=1.【点睛】本题考查(1)、相似三角形的判定与性质;(2)、平行四边形的性质.9、C【解析】根据轴对称图形的定义沿一条直线对折后,直线两旁部分完全重合的图形是轴对称图形,以及中心对称图形的定义分别判断即可得出答案.【详解】A.此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形,不是中心对称图形,故此选项错误;B.此图形沿一条直线对折后能够完全重合,∴此图形不是轴对称图形,不是中心对称图形,故此选项错误。C.此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,旋转180∘能与原图形重合,是中心对称图形,故此选项正确;D.此图形沿一条直线对折后能够完全重合,旋转180°不能与原图形重合,∴此图形是轴对称图形,不是中心对称图形,故此选项错误。故选C【点睛】此题考查轴对称图形和中心对称图形,难度不大10、C【分析】根据抛物线的对称性确定抛物线与x轴的另一个交点为(−3,1),然后观察函数图象,找出抛物线在x轴上方的部分所对应的自变量的范围即可.【详解】∵y=ax2+bx+c的对称轴为直线x=−1,与x轴的一个交点为(1,1),∴抛物线与x轴的另一个交点为(−3,1),∴当−3<x<1时,y>1.故选:C.【点睛】此题主要考查二次函数的图像与性质,解题的关键是根据函数对称轴找到抛物线与x轴的交点.二、填空题(每小题3分,共24分)11、80°或100°【解析】作出图形,证明Rt△ACE≌Rt△ACF,Rt△BCE≌Rt△DCF,分类讨论可得解.【详解】∵AB=BC,∠ABC=100°,∴∠1=∠2=∠CAD=40°,∴AD∥BC.点D的位置有两种情况:如图①,过点C分别作CE⊥AB于E,CF⊥AD于F,∵∠1=∠CAD,∴CE=CF,在Rt△ACE与Rt△ACF中,,∴Rt△ACE≌Rt△ACF,∴∠ACE=∠ACF.在Rt△BCE与Rt△DCF中,,∴Rt△BCE≌Rt△DCF,∴∠BCE=∠DCF,∴∠ACD=∠2=40°,∴∠BCD=80°;如图②,∵AD′∥BC,AB=CD′,∴四边形ABCD′是等腰梯形,∴∠BCD′=∠ABC=100°,综上所述,∠BCD=80°或100°,故答案为80°或100°.【点睛】本题考查了全等三角形的判定与性质,等腰梯形的判定与性质,本题关键是证明Rt△ACE≌Rt△ACF,Rt△BCE≌Rt△DCF,同时注意分类思想的应用.12、(7,).【分析】直接利用关于原点对称点的性质得出答案.【详解】解:点A(-7,)关于原点对称的点的坐标是:(7,).故答案为:(7,).【点睛】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的符号是解题关键.13、y=-5(x+2)2-1【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再向下平移1个单位长度,

∴新抛物线顶点坐标为(-2,-1),

∴所得到的新的抛物线的解析式为y=-5(x+2)2-1.

故答案为:y=-5(x+2)2-1.【点睛】本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键.14、x=1.【分析】用对称轴公式直接求解.【详解】抛物线y=x1﹣4x的对称轴为直线x==﹣=1.故答案为x=1.【点睛】本题主要考查二次函数的性质,掌握二次函数的对称轴公式x=是本题的解题关键..15、14;1【分析】先设三军女兵方队共有排,则每排有()人,根据三军女兵方队共352人可列方程求解即可.【详解】设三军女兵方队共有排,则每排有()人,根据题意得:

整理,得.

解得:(不合题意,舍去),

则(人).

故答案为:14,1.【点睛】本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.16、1【分析】先解变形为,再根据,把转化为普通运算,然后把代入计算即可.【详解】∵,∴,∵,∴=(x+1)(x-1)-3x(x-2)=

x2-1-3x2+6x=-2x2+6x-1=-2(x2-3x)-1=-2×(-1)-1=1.故答案为1.【点睛】本题考查了信息迁移,整式的混合运算及添括号法则,17、【分析】由抛物线与x轴有两个交点,可得出关于m的一元一次不等式,解之即可得出m的取值范围.【详解】∵抛物线y=2x2+6x+m与x轴有两个交点,∴△=62﹣4×2m=36﹣8m>0,∴m.故答案为:m.【点睛】本题考查了抛物线与x轴的交点,牢记“当△=b2﹣4ac>0时,抛物线与x轴有2个交点”是解答本题的关键.18、【分析】直接利用阻力×阻力臂=动力×动力臂,进而代入已知数据即可得解.【详解】解:∵阻力×阻力臂=动力×动力臂,∴∴故答案为:.【点睛】本题考查的知识点是用待定系数法求反比例函数解析式,解此题的关键是要知道阻力×阻力臂=动力×动力臂.三、解答题(共66分)19、(1)AD=;(2);(3)FG+EG是一个定值,为.【分析】(1)先由勾股定理求出BC的长,再由直角三角形斜边中线的性质可求出AD的长;(2)先证FG=CG=1,通过BD=CDBC=AD,求出BG的长,再证△BGE∽△BDA,利用相似三角形的性质可求出的值;(3)由(2)知FG=CG,再证EG=BG,即可证FG+EG=BC=2.【详解】(1)∵∠BAC=90°,且BD=CD,∴ADBC.∵BC2,∴AD2.故答案为:;(2)如图1.∵GF∥AD,∴∠CFG=∠CAD.∵BD=CDBC=AD,∴∠CAD=∠C,∴∠CFG=∠C,∴CG=FG=1,∴BG=21.∵AD∥GE,∴△BGE∽△BDA,∴;(3)如图2,随点G位置的改变,FG+EG是一个定值.理由如下:∵ADBC=BD,∴∠B=∠BAD.∵AD∥EG,∴∠BAD=∠E,∴∠B=∠E,∴EG=BG,由(2)知,GF=GC,∴EG+FG=BG+CG=BC=2,∴FG+EG是一个定值,为2.【点睛】本题考查了直角三角形的性质,相似三角形的判定与性质等,解题的关键是能够灵活运用相似三角形的判定与性质.20、(1)(2)①②【分析】(1)求出圆的半径,再判断出四边形OFDE是矩形,然后根据矩形的对角线相等解答即可;(2)①根据线段中点的定义得到OE=OC=OD,根据三角形的内角和得到∠DOE=60°,于是得到结论;②延长CO交⊙O于G,连接DG交AB于P,则PC+PD的最小值等于DG长,解直角三角形即可得到结论.【详解】解:(1)如图,连接,∵的直径,∴圆的半径为.∵,∴四边形是矩形,∴.(2)①∵点为的中点,∴,∴,∴,∴劣弧的长度为.②.延长交于点,连接交于点,则的最小值为.∵,,∴,∴的最小值为.【点睛】本题考查了圆周角定理,矩形的判定和性质,轴对称-最短路线问题,正确的作出辅助线是解题的关键.21、(1)△AEF是等边三角形,证明见解析;(2)CF=,CE=6或CF=6,CE=;(3)△CEF的面积不发生变化,理由见解析.【分析】(1)证明△BCE≌△DCF(SAS),得出∠BE=DF,CBE=∠CDF,证明△ABE≌△ADF(SAS),得出AE=AF,即可得出结论;(2)分两种情况:①∠AFE=90°时,连接AC、MN,证明△MAC≌△NAD(ASA),得出AM=AN,CM=DN,证出△AMN是等边三角形,得出AM=MN=AN,设AM=AN=MN=m,DN=CM=b,BM=CN=a,证明△CFN∽△DAN,得出,得出FN=,AF=m+,同理AE=m+,在Rt△AEF中,由直角三角形的性质得出AE=2AF,得出m+=2(m+),得出b=2a,因此,得出CF=AD=,同理CE=2AB=6;②∠AEF=90°时,同①得出CE=AD=,CF=2AB=6;(3)作FH⊥CD于H,如图4所示:由(2)得BM=CN=a,CM=DN=b,证明△ADN∽△FCN,得出,由平行线得出∠FCH=∠B=60°,△CEM∽△BAM,得出,得出,求出CF×CE=AD×AB=3×3=9,由三角函数得出CH=CF×sin∠FCH=CF×sin60°=CF,即可得出结论.【详解】解:(1)△AEF是等边三角形,理由如下:连接BE、DF,如图1所示:∵四边形ABCD是菱形,∴AB=BC=DC=AD,∠ABC=∠ADC,在△BCE和△DCF中,,∴△BCE≌△DCF(SAS),∴∠BE=DF,CBE=∠CDF,∴∠ABC+∠CBE=∠ADC+∠CDF,即∠ABE=∠ADF,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS),∴AE=AF,又∵∠EAF=60°,∴△AEF是等边三角形;(2)分两种情况:①∠AFE=90°时,连接AC、MN,如图2所示:∵四边形ABCD是菱形,∴AB=BC=DC=AD=3,∠D=∠B=60°,AD∥BC,AB∥CD,∴△ABC和△ADC是等边三角形,∴AC=AD,∠ACM=∠D=∠CAD=60°=∠EAF,∴∠MAC=∠NAD,在△MAC和△NAD中,,∴△MAC≌△NAD(ASA),∴AM=AN,CM=DN,∵∠EAF=60°,∴△AMN是等边三角形,∴AM=MN=AN,设AM=AN=MN=m,DN=CM=b,BM=CN=a,∵CF∥AD,∴△CFN∽△DAN,∴,∴FN=,∴AF=m+,同理:AE=m+,在Rt△AEF中,∵∠EAF=60°,∴∠AEF=30°,∴AE=2AF,∴m+=2(m+),整理得:b2﹣ab﹣2a2=0,(b﹣2a)(b+a)=0,∵b+a≠0,∴b﹣2a=0,∴b=2a,∴=,∴CF=AD=,同理:CE=2AB=6;②∠AEF=90°时,连接AC、MN,如图3所示:同①得:CE=AD=,CF=2AB=6;(3)当CE,CF的长度发生变化时,△CEF的面积不发生变化;理由如下:作FH⊥CD于H,如图4所示:由(2)得:BM=CN=a,CM=DN=b,∵AD∥CF,∴△ADN∽△FCN,∴,∵CE∥AB,∴∠FCH=∠B=60°,△CEM∽△BAM,∴,∴,∴CF×CE=AD×AB=3×3=9,∵CH=CF×sin∠FCH=CF×sin60°=CF,△CEF的面积=CE×FH=CE×CF=×9×=,∴△CEF的面积是定值,不发生变化.【点睛】本题考查了三角形全等,三角形相似的判定及性质,三角函数的应用,相似的的灵活应用是解题的关键22、(1);(2)当点到点的距离与到点的距离之和最小时的坐标为;(3)点.【分析】(1)根据对称轴方程可得,把B、C坐标代入列方程组求出a、b、c的值即可得答案;(2)根据二次函数的对称性可得A点坐标,设直线AC与对称轴的交点为M,可得MB=MA,即可得出MB+MC=MC+MA=AC,为MB+MC的最小值,根据A、C坐标,利用待定系数法可求出直线AC的解析式,把x=-1代入求出y值,即可得点M的坐标.(3)设直线BQ交y轴于点H,过点作于点,利用勾股定理可求出BC的长,根据∠CBQ=45°可得HM=BM,利用∠OCB的正切函数可得CM=3HM,即可求出CM、HM的长,利用勾股定理可求出CH的长,即可得H点坐标,利用待定系数法可得直线BH的解析式,联立直线BQ与抛物线的解析式求出交点坐标即可得点Q坐标.【详解】(1)∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线,∴,∵抛物线经过B(1,0),C(0,3)两点,∴,解得:,∴抛物线解析式为.(2)设直线AC的解析式为y=mx+n,∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线,B(0,0),∴点A坐标为(-3,0),∵C(0,3),∴,解得:,∴直线解析式为,设直线与对称轴的交点为,∵点A与点B关于对称轴x=-1对称,∴MA=MB,∴MB+MC=MA+MC=AC,∴此时的值最小,当时,y=-1+3=2,∴当点到点的距离与到点的距离之和最小时的坐标为.(3)如图,设直线交轴于点,过点作于点,∵B(1,0),C(0,3),∴OB=1,OC=3,BC==,∴,∵∠CBQ=45°,∴△BHM是等腰直角三角形,∴HM=BM,∵tan∠OCB=,∴CM=3HM,∴BC=MB+CM=4HM=,解得:,∴CM=,∴CH==,∴OH=OC-CH=3-=,∴,设直线BH的解析式为:y=kx+b,∴,解得:,∴的表达式为:,联立直线BH与抛物线解析式得,解得:(舍去)或x=,当x=时,y==,∴点Q坐标为(,).【点睛】本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度,熟练掌握二次函数的性质是解题关键.23、(1);(2)①见解析,②见解析【分析】(1)利用等面积法即可求出AC边上的高;

(2)①利用位似图形的性质得出对应点位置连接即可;

②利用矩形的判定方法即可画出.【详解】解:(1)由图可知,设AC边上的高为x,则由三角形面积公式可得:解得,即AC边上的高为.(2)①如图所示:△DEC即为所求.②如图所示:矩形ABMN即为所求.【点睛】本题考查作位似图形,矩形的判定,勾股定理.(1)中熟练掌握等面积法是解决此问的关键;(2)中能作出AC的中点是解题关键;(3)中注意矩形的四个角都是直角,且矩形的一边为AB,另一边要与△ABC中AB边上的高相等.24、(1),,;(2)见解析;(3)估计该校最喜欢足球的人数为75【分析】(1)根据喜欢武术的有12人,所占的比例是0.1,即可求得总数,继而求得其他答案;

(2)根据(1)的结果,即可补全统计图;

(3)利用总人数3000乘以对应的比例,即可估计该校最喜欢足球的人数.【详解】(1)∵喜

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论