2023年江西省全南县九年级数学第一学期期末检测试题含解析_第1页
2023年江西省全南县九年级数学第一学期期末检测试题含解析_第2页
2023年江西省全南县九年级数学第一学期期末检测试题含解析_第3页
2023年江西省全南县九年级数学第一学期期末检测试题含解析_第4页
2023年江西省全南县九年级数学第一学期期末检测试题含解析_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年江西省全南县九年级数学第一学期期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,⊙O的半径为2,△ABC为⊙O内接等边三角形,O为圆心,OD⊥AB,垂足为D.OE⊥AC,垂足为E,连接DE,则DE的长为()A.1 B. C. D.22.如图,在中,,,,点在边上,且,点为边上的动点,将沿直线翻折,点落在点处,则点到边距离的最小值是()A.3.2 B.2 C.1.2 D.13.下列关于抛物线y=2x2﹣3的说法,正确的是()A.抛物线的开口向下B.抛物线的对称轴是直线x=1C.抛物线与x轴有两个交点D.抛物线y=2x2﹣3向左平移两个单位长度可得抛物线y=2(x﹣2)2﹣34.下表是二次函数y=ax2+bx+c的部分x,y的对应值:x…﹣1﹣0123…y…2m﹣1﹣﹣2﹣﹣12…可以推断m的值为()A.﹣2 B.0 C. D.25.抛物线y=x2﹣2x+2的顶点坐标为()A.(1,1) B.(﹣1,1) C.(1,3) D.(﹣1,3)6.在下面四个选项的图形中,不能由如图图形经过旋转或平移得到的是()A. B. C. D.7.下列方程中,是关于的一元二次方程的是()A. B. C. D.8.关于的一元二次方程有两个实数根,则的取值范围是()A. B. C.且 D.且9.对于题目“抛物线l1:(﹣1<x≤2)与直线l2:y=m(m为整数)只有一个交点,确定m的值”;甲的结果是m=1或m=2;乙的结果是m=4,则()A.只有甲的结果正确B.只有乙的结果正确C.甲、乙的结果合起来才正确D.甲、乙的结果合起来也不正确10.如图,在平面直角坐标系中,直线l的表达式是,它与两坐标轴分别交于C、D两点,且∠OCD=60º,设点A的坐标为(m,0),若以A为圆心,2为半径的⊙A与直线l相交于M、N两点,当MN=时,m的值为()A. B. C.或 D.或二、填空题(每小题3分,共24分)11.如图,在一笔直的海岸线l上有A,B两个观测站,AB=2km,从A测得灯塔P在北偏东60°的方向,从B测得灯塔P在北偏东45°的方向,则灯塔P到海岸线l的距离为_____km.12.已知关于x的方程有两个不相等的实数根,则的取值范__________.13.如图,在4×4的正方形网络中,已将部分小正方形涂上阴影,有一个小虫落到网格中,那么小虫落到阴影部分的概率是____.14.如图,在△ABC中,∠C=90°,AC=3,若cosA=,则BC的长为________.15.如图,为反比例函数(其中)图象上的一点,在轴正半轴上有一点,.连接,,且.过点作,交反比例函数(其中)的图象于点,连接交于点,则的值为_____________.16.如图,△ABC是边长为2的等边三角形.取BC边中点E,作ED∥AB,EF∥AC,得到四边形EDAF,它的面积记作;取中点,作∥,∥,得到四边形,它的面积记作.照此规律作下去,则=____________________.17.如图,中,,,,__________.18.如果反比例函数的图象经过点,则该反比例函数的解析式为____________三、解答题(共66分)19.(10分)如图,在中,,点P为内一点,连接PA,PB,PC,求PA+PB+PC的最小值,小华的解题思路,以点A为旋转中心,将顺时针旋转得到,那么就将求PA+PB+PC的值转化为求PM+MN+PC的值,连接CN,当点P,M落在CN上时,此题可解.(1)请判断的形状,并说明理由;(2)请你参考小华的解题思路,证明PA+PB+PC=PM+MN+PC;(3)当,求PA+PB+PC的最小值.20.(6分)已知二次函数与轴交于、(在的左侧)与轴交于点,连接、.(1)如图1,点是直线上方抛物线上一点,当面积最大时,点分别为轴上的动点,连接、、,求的周长最小值;(2)如图2,点关于轴的对称点为点,将抛物线沿射线的方向平移得到新的拋物线,使得交轴于点(在的左侧).将绕点顺时针旋转至.抛物线的对称轴上有—动点,坐标系内是否存在一点,使得以、、、为顶点的四边形是菱形,若存在,请直接写出点的坐标;若不存在,请说明理由.21.(6分)如图,在Rt△ABC中,∠ACB=90°.(1)利用尺规作图,在BC边上求作一点P,使得点P到边AB的距离等于PC的长;(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)(2)在(1)的条件下,以点P为圆心,PC长为半径的⊙P中,⊙P与边BC相交于点D,若AC=6,PC=3,求BD的长.22.(8分)如图,的三个顶点在平面直角坐标系中正方形的格点上.(1)求的值;(2)点在反比例函数的图象上,求的值,画出反比例函数在第一象限内的图象.23.(8分)如图,在平面直角坐标系中,一次函数y=x+2的图象与y轴交于A点,与x轴交于B点,⊙P的半径为,其圆心P在x轴上运动.(1)如图1,当圆心P的坐标为(1,0)时,求证:⊙P与直线AB相切;(2)在(1)的条件下,点C为⊙P上在第一象限内的一点,过点C作⊙P的切线交直线AB于点D,且∠ADC=120°,求D点的坐标;(3)如图2,若⊙P向左运动,圆心P与点B重合,且⊙P与线段AB交于E点,与线段BO相交于F点,G点为弧EF上一点,直接写出AG+OG的最小值.24.(8分)如图1.在平面直角坐标系中,抛物线与轴相交于两点,顶点为,设点是轴的正半轴上一点,将抛物线绕点旋转,得到新的抛物线.求抛物线的函数表达式:若抛物线与抛物线在轴的右侧有两个不同的公共点,求的取值范围.如图2,是第一象限内抛物线上一点,它到两坐标轴的距离相等,点在抛物线上的对应点,设是上的动点,是上的动点,试探究四边形能否成为正方形?若能,求出的值;若不能,请说明理由.25.(10分)甲、乙两所医院分别有一男一女共4名医护人员支援湖北武汉抗击疫情.(1)若从甲、乙两医院支援的医护人员中分别随机选1名,则所选的2名医护人员性别相同的概率是;(2)若从支援的4名医护人员中随机选2名,用列表或画树状图的方法求出这2名医护人员来自同一所医院的概率.26.(10分)如图1,已知中,,,,它在平面直角坐标系中位置如图所示,点在轴的负半轴上(点在点的右侧),顶点在第二象限,将沿所在的直线翻折,点落在点位置(1)若点坐标为时,求点的坐标;(2)若点和点在同一个反比例函数的图象上,求点坐标;(3)如图2,将四边形向左平移,平移后的四边形记作四边形,过点的反比例函数的图象与的延长线交于点,则在平移过程中,是否存在这样的,使得以点为顶点的三角形是直角三角形且点在同一条直线上?若存在,求出的值;若不存在,请说明理由

参考答案一、选择题(每小题3分,共30分)1、C【分析】过O作于H,得到,连接OB,由为内接等边三角形,得到,求得,根据垂径定理和三角形的中位线定理即可得到结论.【详解】解:过作于,,连接,为内接等边三角形,,,,,,,,,,故选:.【点睛】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了三角形中位线定理.2、C【分析】先依据勾股定理求得AB的长,然后依据翻折的性质可知PF=FC,故此点P在以F为圆心,以1为半径的圆上,依据垂线段最短可知当FP⊥AB时,点P到AB的距离最短,然后依据题意画出图形,最后,利用相似三角形的性质求解即可.【详解】如图所示:当PE∥AB.在Rt△ABC中,∵∠C=90°,AC=6,BC=8,∴AB==10,由翻折的性质可知:PF=FC=1,∠FPE=∠C=90°.∵PE∥AB,∴∠PDB=90°.由垂线段最短可知此时FD有最小值.又∵FP为定值,∴PD有最小值.又∵∠A=∠A,∠ACB=∠ADF,∴△AFD∽△ABC.∴,即,解得:DF=2.1.∴PD=DF-FP=2.1-1=1.1.故选:C.【点睛】本题考查翻折变换,垂线段最短,勾股定理等知识,解题的关键是学会用转化的思想思考问题3、C【解析】根据二次函数的性质及二次函数图象“左加右减,上加下减”的平移规律逐一判断即可得答案.【详解】∵2>0,∴抛物线y=2x2﹣3的开口向上,故A选项错误,∵y=2x2﹣3是二次函数的顶点式,∴对称轴是y轴,故B选项错误,∵-3<0,抛物线开口向上,∴抛物线与x轴有两个交点,故C选项正确,抛物线y=2x2﹣3向左平移两个单位长度可得抛物线y=2(x+2)2﹣3,故D选项错误,故选:C.【点睛】此题考查二次函数的性质及二次函数图象的平移,熟练掌握二次函数的性质及“左加右减,上加下减”的平移规律是解题关键.4、C【分析】首先根据表中的x、y的值确定抛物线的对称轴,然后根据对称性确定m的值即可.【详解】解:观察表格发现该二次函数的图象经过点(,﹣)和(,﹣),所以对称轴为x==1,∵,∴点(﹣,m)和(,)关于对称轴对称,∴m=,故选:C.【点睛】本题考查了二次函数的图象与性质,解题的关键是通过表格信息确定抛物线的对称轴.5、A【解析】分析:把函数解析式整理成顶点式形式,然后写出顶点坐标即可.详解:∵y=x2-2x+2=(x-1)2+1,∴顶点坐标为(1,1).故选A.点睛:本题考查了二次函数的性质,熟练掌握利用顶点式解析式写出顶点坐标的方法是解题的关键.6、C【分析】由题图图形,旋转或平移,分别判断、解答即可.【详解】A、由图形顺时针旋转90°,可得出;故本选项不符合题意;

B、由图形逆时针旋转90°,可得出;故本选项不符合题意;

C、不能由如图图形经过旋转或平移得到;故本选项符合题意;

D、由图形顺时针旋转180°,而得出;故本选项不符合题意;

故选:C.【点睛】本题考查了旋转,旋转是围绕一点旋转一定的角度的图形变换,因而旋转一定有旋转中心和旋转角,且旋转前后图形能够重合,这时判断旋转的关键.7、C【解析】只有一个未知数且未知数的最高次数为2的整式方程为一元二次方程.【详解】解:A选项,缺少a≠0条件,不是一元二次方程;B选项,分母上有未知数,是分式方程,不是一元二次方程;C选项,经整理后得x2+x=0,是关于x的一元二次方程;D选项,经整理后是一元一次方程,不是一元二次方程;故选择C.【点睛】本题考查了一元二次方程的定义.8、D【解析】分析:根据一元二次方程根的判别式进行计算即可.详解:根据一元二次方程一元二次方程有两个实数根,解得:,根据二次项系数可得:故选D.点睛:考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.9、C【分析】画出抛物线l1:y=﹣(x﹣1)2+4(﹣1<x≤2)的图象,根据图象即可判断.【详解】解:由抛物线l1:y=﹣(x﹣1)2+4(﹣1<x≤2)可知抛物线开口向下,对称轴为直线x=1,顶点为(1,4),如图所示:∵m为整数,由图象可知,当m=1或m=2或m=4时,抛物线l1:y=﹣(x﹣1)2+4(﹣1<x≤2)与直线l2:y=m(m为整数)只有一个交点,∴甲、乙的结果合在一起正确,故选:C.【点睛】本题考查了二次函数图象与一次函数图象的交点问题,作出函数的图象是解题的关键.10、C【分析】根据题意先求得、的长,分两种情况讨论:①当点在直线l的左侧时,利用勾股定理求得,利用锐角三角函数求得,即可求得答案;②当点在直线l的右侧时,同理可求得答案.【详解】令,则,点D的坐标为,∵∠OCD=60º,∴,分两种情况讨论:①当点在直线l的左侧时:如图,过A作AG⊥CD于G,∵,MN=,∴,∴,在中,∠ACG=60º,∴,∴,∴,②当点在直线l的右侧时:如图,过A作AG⊥直线l于G,∵,MN=,∴,∴,在中,∠ACG=60º,∴,∴,∴,综上:m的值为:或.故选:C.【点睛】本题考查了一次函数图象上点的坐标特征,勾股定理,锐角三角函数,分类讨论、构建合适的辅助线是解题的关键.二、填空题(每小题3分,共24分)11、【分析】作PD⊥AB,设PD=x,根据∠CBP=∠BPD=45°知BD=PD=x、AD=AB+BD=2+x,由sin∠PAD=列出关于x的方程,解之可得答案.【详解】如图所示,过点P作PD⊥AB,交AB延长线于点D,设PD=x,∵∠PBD=∠BPD=45°,∴BD=PD=x,又∵AB=2,∴AD=AB+BD=2+x,∵∠PAD=30°,且sin∠PAD=,∴,解得:x=1+,即船P离海岸线l的距离为(1+)km,故答案为1+.【点睛】本题主要考查解直角三角形的应用-方向角问题,解题的关键是根据题意构建合适的直角三角形及三角函数的定义及其应用.12、且;【分析】根据一元二次方程的定义和根的判别式得出不等式组,求出不等式组的解集即可.【详解】∵关于x的方程(k-1)x1-x+1=0有两个不相等的实数根,∴k-1≠0且△=(-1)1-4(k-1)•1=-4k+9>0,即,解得:k<且k≠1,故答案为k<且k≠1.【点睛】本题考查了一元二次方程的定义和根的判别式,能得出关于k的不等式组是解此题的关键.13、【解析】本题应分别求出正方形的总面积和阴影部分的面积,用阴影部分的面积除以总面积即可得出概率.【详解】解:小虫落到阴影部分的概率=,故答案为:.【点睛】本题考查的是概率的公式,用到的知识点为:概率=相应的面积与总面积之比.14、1【分析】由题意先根据∠C=90°,AC=3,cos∠A=,得到AB的长,再根据勾股定理,即可得到BC的长.【详解】解:∵△ABC中,∠C=90°,AC=3,cos∠A=,∴,∴AB=5,∴BC==1.故此空填1.【点睛】本题考查的是锐角三角函数的定义,锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cosA,以此并结合勾股定理分析求解.15、【分析】过点作轴,垂足为点,交于点,根据三线合一可得,,,利用平行线即可求出MH从而求出AM,再根据平行线即可证出,列出比例式即可求出的值.【详解】解:过点作轴,垂足为点,交于点,如图所示.,,,,,,,,.故答案为【点睛】此题考查的是反比例函数与图形题,掌握利用反比例函数求点的坐标和相似三角形的判定及性质是解决此题的关键.16、【分析】先求出△ABC的面积,再根据中位线性质求出S1,同理求出S2,以此类推,找出规律即可得出S2019的值.【详解】∵△ABC是边长为2的等边三角形,∴△ABC的高=∴S△ABC=,∵E是BC边的中点,ED∥AB,∴ED是△ABC的中位线,∴ED=AB∴S△CDE=S△ABC,同理可得S△BEF=S△ABC∴S1=S△ABC==,同理可求S2=S△BEF=S△ABC==,以此类推,Sn=·S△ABC=∴S2019=.【点睛】本题考查中位线的性质和相似多边形的性质,熟练运用性质计算出S1和S2,然后找出规律是解题的关键.17、18【分析】根据勾股定理和三角形面积公式得,再通过完全平方公式可得.【详解】因为中,,,,所以所以所以=64+36=100所以AB+BC=10所以AC+AB+BC=8+10=18故答案为:18【点睛】考核知识点:勾股定理.灵活根据完全平方公式进行变形是关键.18、【分析】根据题意把点代入,反比例函数的解析式即可求出k值进而得出答案.【详解】解:设反比例函数的解析式为:,把点代入得,所以该反比例函数的解析式为:.故答案为:.【点睛】本题考查反比例函数的解析式,根据题意将点代入并求出k值是解题的关键.三、解答题(共66分)19、(1)等边三角形,见解析;(2)见解析;(3)【解析】(1)根据旋转的性质可以得出,即可证明出是等边三角形;(2)绕点A顺时针旋转得到,根据的旋转的性质得到,,相加即可得;(3)由(2)知,当C、P、M、N四点共线时,PA+PB+PC取到最小,由,,可得CN垂直平分AB,再利用直角三角形的边角关系,从而求出PA+PB+PC的最小值.【详解】(1)等边三角形;绕A点顺时针旋转得到MA,,是等边三角形.(2)绕点A顺时针旋转得到,,由(1)可知,.(3)由(2)知,当C、P、M、N四点共线时,PA+PB+PC取到最小.连接BN,由旋转的性质可得:AB=AN,∠BAM=60°∴是等边三角形;,,是AB的垂直平分线,垂足为点Q,,,,即的最小值为.【点睛】本题为旋转综合题,掌握旋转的性质、等边三角形的判定及性质及理解小华的思路是关键.20、(1);(1)存在,理由见解析;,,,,【分析】(1)利用待定系数法求出A,B,C的坐标,如图1中,作PQ∥y轴交BC于Q,设P,则Q,构建二次函数确定点P的坐标,作P关于y轴的对称点P1(-2,6),作P关于x轴的对称点P1(2,-6),的周长最小,其周长等于线段的长,由此即可解决问题.(1)首先求出平移后的抛物线的解析式,确定点H,点C′的坐标,分三种情形,当OC′=C′S时,可得菱形OC′S1K1,菱形OC′S1K1.当OC′=OS时,可得菱形OC′K3S3,菱形OC′K2S2.当OC′是菱形的对角线时,分别求解即可解决问题.【详解】解:(1)如图,,过点作轴平行线,交线段于点,设,=-(m1-2)1+2,∵,∴m=2时,△PBC的面积最大,此时P(2,6)作点关于轴的对称点,点关于轴的对称点,连接交轴、轴分别为,此时的周长最小,其周长等于线段的长;∵,∴.(1)如图,∵E(0,-2),平移后的抛物线经过E,B,∴抛物线的解析式为y=-x1+bx-2,把B(8,0)代入得到b=2,∴平移后的抛物线的解析式为y=-x+2x-2=-(x-1)(x-8),令y=0,得到x=1或8,∴H(1,0),∵△CHB绕点H顺时针旋转90°至△C′HB′,∴C′(6,1),当OC′=C′S时,可得菱形OC′S1K1,菱形OC′S1K1,∵OC′=C′S==1,∴可得S1(5,1-),S1(5,1+),∵点C′向左平移一个单位,向下平移得到S1,∴点O向左平移一个单位,向下平移个单位得到K1,∴K1(-1,-),同法可得K1(-1,),当OC′=OS时,可得菱形OC′K3S3,菱形OC′K2S2,同法可得K3(11,1-),K2(11,1+),当OC′是菱形的对角线时,设S5(5,m),则有51+m1=11+(1-m)1,解得m=-5,∴S5(5,-5),∵点O向右平移5个单位,向下平移5个单位得到S5,∴C′向上平移5个单位,向左平移5个单位得到K5,∴K5(1,7),综上所述,满足条件的点K的坐标为(-1,-)或(-1,)或(11,1-)或(11,1+)或(1,7).【点睛】本题属于二次函数综合题,考查了二次函数的性质,平移变换,翻折变换,菱形的判定和性质,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题,学会用分类讨论的思想思考问题.21、(1)如图所示,见解析;(1)BD的长为1.【分析】(1)根据题意可知要作∠A的平分线,按尺规作图的要求作角平分线即可;(1)由切线长定理得出AC=AE,设BD=x,BE=y,则BC=6+x,BP=3+x,通过△PEB∽△ACB可得出,从而建立一个关于x,y的方程,解方程即可得到BD的长度.【详解】(1)如图所示:作∠A的平分线交BC于点P,点P即为所求作的点.(1)作PE⊥AB于点E,则PE=PC=3,∴AB与圆相切,∵∠ACB=90°,∴AC与圆相切,∴AC=AE,设BD=x,BE=y,则BC=6+x,BP=3+x,∵∠B=∠B,∠PEB=∠ACB,∴△PEB∽△ACB∴∴解得x=1,答:BD的长为1.【点睛】本题主要考查尺规作图及相似三角形的判定及性质,掌握相似三角形的判定及性质是解题的关键.22、(1);(2),图见解析【分析】(1)过点B作BD⊥AC于点D,然后在Rt△ABD中可以求出;(2)将点B代入,可得出k的值,从而得出反比例函数解析式,进而用描点法画出函数图象即可.【详解】解:(1)过点B作BD⊥AC于点D,由图可得,BD=2,AD=4,∴.(2)将点B(1,3)代入,得k=3,∴反比例函数解析式为.函数在第一象限内取点,描点得,x(x>0)1236y6322连线得函数图象如图:【点睛】本题主要考查正切值的求法,反比例函数解析式的求法以及反比例函数图象的画法,掌握基本概念和作图步骤是解题的关键.23、(1)见解析;(2)D(,+2);(3).【分析】(1)连接PA,先求出点A和点B的坐标,从而求出OA、OB、OP和AP的长,即可确定点A在圆上,根据相似三角形的判定定理证出△AOB∽△POA,根据相似三角形的性质和等量代换证出PA⊥AB,即可证出结论;(2)连接PA,PD,根据切线长定理可求出∠ADP=∠PDC=∠ADC=60°,利用锐角三角函数求出AD,设D(m,m+2),根据平面直角坐标系中任意两点之间的距离公式求出m的值即可;(3)在BA上取一点J,使得BJ=,连接BG,OJ,JG,根据相似三角形的判定定理证出△BJG∽△BGA,列出比例式可得GJ=AG,从而得出AG+OG=GJ+OG,设J点的坐标为(n,n+2),根据平面直角坐标系中任意两点之间的距离公式求出n,从而求出OJ的长,然后根据两点之间线段最短可得GJ+OG≥OJ,即可求出结论.【详解】(1)证明:如图1中,连接PA.∵一次函数y=x+2的图象与y轴交于A点,与x轴交于B点,∴A(0,2),B(﹣4,0),∴OA=2,OB=4,∵P(1,0),∴OP=1,∴OA2=OB•OP,AP=∴=,点A在圆上∵∠AOB=∠AOP=90°,∴△AOB∽△POA,∴∠OAP=∠ABO,∵∠OAP+∠APO=90°,∴∠ABO+∠APO=90°,∴∠BAP=90°,∴PA⊥AB,∴AB是⊙P的切线.(2)如图1﹣1中,连接PA,PD.∵DA,DC是⊙P的切线,∠ADC=120°,∴∠ADP=∠PDC=∠ADC=60°,∴∠APD=30°,∵∠PAD=90°∴AD=PA•tan30°=,设D(m,m+2),∵A(0,2),∴m2+(m+2﹣2)2=,解得m=±,∵点D在第一象限,∴m=,∴D(,+2).(3)在BA上取一点J,使得BJ=,连接BG,OJ,JG.∵OA=2,OB=4,∠AOB=90°,∴AB===2,∵BG=,BJ=,∴BG2=BJ•BA,∴=,∵∠JBG=∠ABG,∴△BJG∽△BGA,∴==,∴GJ=AG,∴AG+OG=GJ+OG,∵BJ=,设J点的坐标为(n,n+2),点B的坐标为(-4,0)∴(n+4)2+(n+2)2=,解得:n=-3或-5(点J在点B右侧,故舍去)∴J(﹣3,),∴OJ==∵GJ+OG≥OJ,∴AG+OG≥,∴AG+OG的最小值为.故答案为.【点睛】此题考查的是一次函数与圆的综合大题,掌握相似三角形的判定及性质、切线的判定及性质、切线长定理、勾股定理、锐角三角函数和两点之间线段最短是解决此题的关键.24、;;四边形可以为正方形,【分析】(1)由题意得出A,B坐标,并代入坐标利用待定系数法求出抛物线的函数表达式;(2)根据题意分别求出当过点时m的值以及当过点时m的值,并以此进行分析求得;(3)由题意设,代入解出n,并作

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论