版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年江苏省盐城市亭湖初级中学数学九上期末经典模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,网格中小正方形的边长为1个单位长度,△ABC的顶点均在小正方形的顶点上,若将△ABC绕着点A逆时针旋转得到△AB′C′,点C在AB′上,则的长为()A.π B. C.7π D.6π2.△ABC中,∠ACB=90°,CD⊥AB于D,已知:cos∠A=,则sin∠DCB的值为()A. B. C. D.3.已知二次函数的图像与x轴没有交点,则()A. B. C. D.4.如图是某零件的模型,则它的左视图为()A. B. C. D.5.如图,△ABC中,∠A=70°,AB=4,AC=6,将△ABC沿图中的虚线剪开,则剪下的阴影三角形与原三角形不相似的是()A. B.C. D.6.如果将抛物线平移,使平移后的抛物线与抛物线重合,那么它平移的过程可以是()A.向右平移4个单位,向上平移11个单位B.向左平移4个单位,向上平移11个单位C.向左平移4个单位,向上平移5个单位D.向右平移4个单位,向下平移5个单位.7.对于一元二次方程来说,当时,方程有两个相等的实数根:若将的值在的基础上减小,则此时方程根的情况是()A.没有实数根 B.两个相等的实数根C.两个不相等的实数根 D.一个实数根8.如图5,一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面成30°夹角,这棵大树在折断前的高度为()A.10米 B.15米 C.25米 D.30米9.如图,在边长为1的小正方形网格中,点都在这些小正方形的顶点上,则的余弦值是()A. B. C. D.10.要将抛物线平移后得到抛物线,下列平移方法正确的是()A.向左平移1个单位,再向上平移2个单位. B.向左平移1个单位,再向下平移2个单位.C.向右平移1个单位,再向上平移2个单位. D.向右平移1个单位,再向下平移2个单位.11.下列几何图形不是中心对称图形的是()A.平行四边形 B.正五边形 C.正方形 D.正六边形12.若,那么的值是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,,,是上的三个点,四边形是平行四边形,连接,,若,则_____.14.如图,在边长为2的正方形中,动点,分别以相同的速度从,两点同时出发向和运动(任何一个点到达停止),在运动过程中,则线段的最小值为________.15.已知抛物线经过点、,那么此抛物线的对称轴是___________.16.抛物线经过点,则这条抛物线的对称轴是直线__________.17.不等式组的整数解的和是__________.18.如图,在正方形和正方形中,点和点的坐标分别为,,则两个正方形的位似中心的坐标是___________.三、解答题(共78分)19.(8分)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地、颜色等其它方面完全相同,若背面朝上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面朝上方在桌面上,甲从中随机抽取一张卡片,记该卡片上的数字为,然后放回洗匀,背面朝上方在桌面上,再由乙从中随机抽取一张卡片,记该卡片上的数字为,组成一数对.(1)请写出.所有可能出现的结果;(2)甲、乙两人玩游戏,规则如下:按上述要求,两人各抽依次卡片,卡片上述资质和为奇数则甲赢,数字之和为偶数则乙赢,你认为这个游戏公平吗?请说明理由.20.(8分)如图,已知二次函数的图像过点A(-4,3),B(4,4).(1)求抛物线二次函数的解析式.(2)求一次函数直线AB的解析式.(3)看图直接写出一次函数直线AB的函数值大于二次函数的函数值的x的取值范围.(4)求证:△ACB是直角三角形.21.(8分)利客来超市销售某种商品,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低2元,平均每天可多售出4件.(1)若降价6元,则平均每天销售数量为件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?22.(10分)如图,已知,直线垂直平分交于,与边交于,连接,过点作平行于交于点,连.(1)求证:;(2)求证:四边形是菱形;(3)若,求菱形的面积.23.(10分)一家公司招考员工,每位考生要在A、B、C、D、E这5道试题中随机抽出2道题回答,规定答对其中1题即为合格.已知某位考生会答A、B两题,试求这位考生合格的概率.24.(10分)解方程:x2﹣4x﹣5=1.25.(12分)如图1,直线y=kx+1与x轴、y轴分别相交于点A、B,将△AOB绕点A顺时针旋转,使AO落在AB上,得到△ACD,将△ACD沿射线BA平移,当点D到达x轴时运动停止.设平移距离为m,平移后的图形在x轴下方部分的面积为S,S关于m的函数图象如图2所示(其中0<m≤2,2<m≤a时,函数的解析式不同)(1)填空:a=,k=;(2)求S关于m的解析式,并写出m的取值范围.26.若,且3a+2b﹣4c=9,求a+b﹣c的值是多少?
参考答案一、选择题(每题4分,共48分)1、A【分析】根据图示知∠BAB′=45°,所以根据弧长公式l=求得的长.【详解】根据图示知,∠BAB′=45°,的长l==π,故选:A.【点睛】此题考查了弧长的计算、旋转的性质.解答此题时采用了“数形结合”是数学思想.2、C【分析】设,根据三角函数的定义结合已知条件可以求出AC、CD,利用∠BCD=∠A,即可求得答案.【详解】∵,
∴,
∵,
∴设,则,
∴,
∵,
∴,,
∴,
∴.故选:C.【点睛】本题考查直角三角形的性质、三角函数的定义、勾股定理、同角的余角相等等知识,熟记性质是解题的关键.3、C【分析】若二次函数的图像与x轴没有交点,则,解出关于m、n的不等式,再分别判断即可;【详解】解:与轴无交点,,,故A、B错误;同理:;故选C.【点睛】本题主要考查了抛物线与坐标轴的交点,掌握抛物线与坐标轴的交点是解题的关键.4、D【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中.【详解】从左面看去,是两个有公共边的矩形,如图所示:故选:D.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.5、D【解析】试题解析:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;
B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;
C、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误.
D、两三角形的对应边不成比例,故两三角形不相似,故本选项正确;
故选D.6、D【分析】根据平移前后的抛物线的顶点坐标确定平移方法即可得解.【详解】解:抛物线的顶点坐标为:(0,),∵,则顶点坐标为:(4,),∴顶点由(0,)平移到(4,),需要向右平移4个单位,再向下平移5个单位,故选择:D.【点睛】本题考查了二次函数图象与几何变换,此类题目,利用顶点的变化确定抛物线解析式更简便.7、C【分析】根据根的判别式,可得答案.【详解】解:a=1,b=-3,c=,
Δ=b2−4ac=9−4×1×=0∴当的值在的基础上减小时,即c﹤,Δ=b2−4ac>0∴一元二次方程有两个不相等的实数根,
故选C.【点睛】本题考查了根的判别式的应用,能熟记根的判别式的内容是解此题的关键.8、B【分析】如图,在Rt△ABC中,∠ABC=30°,由此即可得到AB=2AC,而根据题意找到CA=5米,由此即可求出AB,也就求出了大树在折断前的高度.【详解】解:如图,在Rt△ABC中,∵∠ABC=30°,∴AB=2AC,而CA=5米,∴AB=10米,∴AB+AC=15米.所以这棵大树在折断前的高度为15米.故选B.【点睛】本题主要利用定理--在直角三角形中30°的角所对的直角边等于斜边的一半,解题关键是善于观察题目的信息,利用信息解决问题.9、D【分析】由题意可知AD=2,BD=3,利用勾股定理求出AB的长,再根据余弦的定义即可求出答案.【详解】解:如下图,根据题意可知,AD=2,BD=3,由勾股定理可得:,∴的余弦值是:.故选:D.【点睛】本题考查的知识点是利用网格求角的三角函数值,解此题的关键是利用勾股定理求出AB的长.10、D【分析】把抛物线解析式配方后可以得到平移公式,从而可得平移方法.【详解】解:由题意得平移公式为:,∴平移方法为向右平移1个单位,再向下平移2个单位.故选D.【点睛】本题考查二次函数图象的平移,经过对前后解析式的比较得到平移坐标公式是解题关键.11、B【分析】根据中心对称图形的定义如果一个图形绕着一个点旋转180°后能够与原图形完全重合即是中心对称图形,这个点叫做对称点.【详解】解:根据中心对称图形的定义来判断:A.平行四边形绕着对角线的交点旋转180°后与原图形完全重合,所以平行四边形是中心对称图形;B.正五边形无论绕着那个点旋转180°后与原图形都不能完全重合,所以正五边形不是中心对称图形;C.正方形绕着对角线的交点旋转180°后与原图形完全重合,所以正方形是中心对称图形;D.正六边形是绕着对角线的交点旋转180°后与原图形完全重合,所以正方形是中心对称图形.故选:B【点睛】本题考查了中心对称图形的判断方法.中心对称图形是一个图形,它绕着图形中的一点旋转180°后与原来的图形完全重合.12、A【分析】根据,可设a=2k,则b=3k,代入所求的式子即可求解.【详解】∵,∴设a=2k,则b=3k,则原式==.故选:A.【点睛】本题考查了比例的性质,根据,正确设出未知数是本题的关键.二、填空题(每题4分,共24分)13、64【分析】先根据圆周角定理求出∠O的度数,然后根据平行四边形的对角相等求解即可.【详解】∵,∴∠O=2,∵四边形是平行四边形,∴∠O=.故答案为:64.【点睛】本题考查了圆周角定理,平行四变形的性质,熟练掌握圆周角定理是解答本题的关键.在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.14、【解析】如图(见解析),先根据正方形的性质、三角形的判定定理与性质得出,再根据正方形的性质、角的和差得出,从而得出点P的运动轨迹,然后根据圆的性质确认CP取最小值时点P的位置,最后利用勾股定理、线段的和差求解即可.【详解】由题意得:由正方形的性质得:,即在和中,,即点P的运动轨迹在以AB为直径的圆弧上如图,设AB的中点为点O,则点P在以点O为圆心,OA为半径的圆上连接OC,交弧AB于点Q由圆的性质可知,当点P与点Q重合时,CP取得最小值,最小值为CQ,即CP的最小值为故答案为:.【点睛】本题是一道较难的综合题,考查了三角形全等的判定定理与性质、圆的性质(圆周角定理)、勾股定理等知识点,利用圆的性质正确判断出点P的运动轨迹以及CP最小时点P的位置是解题关键.15、直线【分析】根据点A、B的纵坐标相等判断出A、B关于对称轴对称,然后列式计算即可得解.【详解】解:∵点、的纵坐标都是5相同,∴抛物线的对称轴为直线.故答案为:直线.【点睛】此题考查二次函数的性质,观察出A、B是对称点是解题的关键.16、【分析】根据抛物线的轴对称性,即可得到答案.【详解】∵抛物线经过点,且点,点关于直线x=1对称,∴这条抛物线的对称轴是:直线x=1.故答案是:.【点睛】本题主要考查二次函数的图象与性质,掌握抛物线的轴对称性,是解题的关键.17、【分析】先求出不等式的解集,再求出不等式组的解集,即可得出答案.【详解】解①得:x<1;解②得:x>−3;∴原不等式组的解集为−3<x<1;∴原不等式组的所有整数解为−2、−1、0∴整数解的和是:-2-1+0=-3.故答案为:-3.【点睛】此题考查解一元一次不等式组,解题关键在于掌握解不等式组.18、或【分析】根据位似变换中对应点的坐标的变化规律,分两种情况:一种是当点E和C是对应顶点,G和A是对应顶点;另一种是A和E是对应顶点,C和G是对应顶点.【详解】∵正方形和正方形中,点和点的坐标分别为,∴(1)当点E和C是对应顶点,G和A是对应顶点,位似中心就是EC与AG的交点.设AG所在的直线的解析式为解得∴AG所在的直线的解析式为当时,,所以EC与AG的交点为(2)A和E是对应顶点,C和G是对应顶点.,则位似中心就是AE与CG的交点设AE所在的直线的解析式为解得∴AE所在的直线的解析式为设CG所在的直线的解析式为解得∴AG所在的直线的解析式为联立解得∴AE与CG的交点为综上所述,两个正方形的位似中心的坐标是或故答案为或【点睛】本题主要考查位似图形,涉及了待定系数法求函数解析,求位似中心,正确分情况讨论是解题的关键.三、解答题(共78分)19、(1)见解析;(2)不公平,理由见解析【解析】(1)利用枚举法解决问题即可;(2)求出数字之和为奇数的概率,数字之和为偶数的概率即可判断.【详解】(1)由题设可知,所有可能出现的结果如下:,,,,,,,,共9种;(2)两人各抽一次卡片,卡片上数字之和为奇数有4种可能,所以(甲赢);卡片上数字之和为偶数有5种可能,所以(乙赢).∵,∴乙赢的可能性大一些,故这个游戏不公平.【点睛】本题考查游戏公平性,概率等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20、(1);(2);(3)﹣4﹤x﹤4;(4)见解析【分析】(1)由题意把A点或B点坐标代入得到,即可得出抛物线二次函数的解析式;(2)根据题意把A点或B点坐标代入y=kx+b,利用待定系数法即可求出一次函数直线AB的解析式;(3)由题意观察函数图像,根据y轴方向直线在曲线上方时,进而得出x的取值范围;(4)根据题意求出C点坐标,进而由两点的距离公式或者是构造直角三角形进行分析求证即可.【详解】解:(1)把A点或B点坐标代入得到,∴抛物线二次函数的解析式为:.(2)把A点或B点坐标代入y=kx+b列出方程组,解得,得出一次函数直线AB的解析式为:..(3)由图象可以看出:一次函数直线AB的函数值大于二次函数的函数值的x的取值范围为:﹣4﹤x﹤4.(4)由抛物线的表达式得:C点坐标为(-2,0),由两点的距离公式或者是构造直角三角形得出,,,.∴,∴△ACB是直角三角形.【点睛】本题考查的是二次函数综合运用,由题意结合一次函数和勾股定理的运用等进行分析是解题的关键.21、(1)32;(2)每件商品应降价2元时,该商店每天销售利润为12元.【分析】(1)根据销售单价每降低2元,平均每天可多售出4件,可得若降价6元,则平均每天可多售出3×4=12件,即平均每天销售数量为1+12=32件;(2)利用商品平均每天售出的件数×每件盈利=每天销售这种商品利润列出方程解答即可.【详解】解:(1)若降价6元,则平均每天销售数量为1+4×3=32件.故答案为32;(2)设每件商品应降价x元时,该商店每天销售利润为12元.根据题意,得(40﹣x)(1+2x)=12,整理,得x2﹣30x+2=0,解得:x1=2,x2=1.∵要求每件盈利不少于25元,∴x2=1应舍去,解得:x=2.答:每件商品应降价2元时,该商店每天销售利润为12元.【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到等量关系进行列方程.22、(1)证明见解析;(2)证明见解析;(3)24.【分析】(1)根据线段垂直平分线的性质即可得出答案;(2)先判定AECF是平行四边形,根据对角线垂直,即可得出答案;(3)根据勾股定理求出DE的值,根据“菱形的面积等于对角线乘积的一半”计算即可得出答案.【详解】(1)证明:由图可知,又∵,∴,∴;解:(2)由(1)知:∴四边形是平行四边形,又∵∴是菱形;(3)在中,∴;【点睛】本题考查的是菱形,难度适中,需要熟练掌握菱形的判定以及菱形面积的公式.23、【详解】解:树状图为:
从树状图看出,所有可能出现的结果共有20个,其中合格的结果有14个,所以,P(这位考生合格)=答:这位考生合格的概率是.24、x=﹣1或x=2.【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【详解】x2-4x-2=1,移项,得x2-4x=2,两边都加上4,得x2-4x+4=2+4,所以(x-2)2=9,则x-2=3或x-2=-3∴x=﹣1或x=2.【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.25、(1)a=4,k=﹣;(2)S=(0<m≤2)或S=﹣+m﹣1(2<m≤4)【分析】(1)先由函数图象变化的特点,得出m=2时的变化是三角形C点与A点重合时,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电热马甲商业机会挖掘与战略布局策略研究报告
- 定制眼镜镜片行业营销策略方案
- 云环境监测服务行业相关项目经营管理报告
- 心理咨询行业市场调研分析报告
- 缓解昆虫叮咬症状的药物制剂市场分析及投资价值研究报告
- 失禁用护垫产品供应链分析
- 关于退休的金融咨询行业经营分析报告
- 可折叠自行车产品供应链分析
- 广告位租赁合同范本
- 建造波浪能发电厂行业经营分析报告
- 三年级数学上册典型例题系列之第一单元:时间计算问题专项练习(原卷版+解析)
- 人教版数学五年级上册5.1《用字母表示数》说课稿
- 大量收购青苗姜合同
- 个人医保承诺书模板
- 2024年农业农村知识考试必背复习题库(浓缩500题)
- 缺血性脑卒中全流程规范化管理
- 医院培训课件:《PPD试验》
- 运动生理学智慧树知到期末考试答案章节答案2024年湖南师范大学
- 2024年广东中山市检察机关劳动合同制司法辅助人员招聘笔试参考题库附带答案详解
- 国开电大《应用写作(汉语)》形考任务1-6答案
- 《高一学期期中考试动员》主题班会课件
评论
0/150
提交评论