2023年湖北省荆州松滋市九年级数学第一学期期末教学质量检测模拟试题含解析_第1页
2023年湖北省荆州松滋市九年级数学第一学期期末教学质量检测模拟试题含解析_第2页
2023年湖北省荆州松滋市九年级数学第一学期期末教学质量检测模拟试题含解析_第3页
2023年湖北省荆州松滋市九年级数学第一学期期末教学质量检测模拟试题含解析_第4页
2023年湖北省荆州松滋市九年级数学第一学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年湖北省荆州松滋市九年级数学第一学期期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.关于x的一元二次方程x2﹣(k+3)x+2k+2=0的根的情况,下面判断正确的是()A.有两个相等的实数根 B.有两个不相等的实数根 C.有两个实数根 D.无实数根2.如图,一根6m长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A(羊只能在草地上活动)那么小羊A在草地上的最大活动区域面积是()A.9πm2 B.πm2 C.15πm2 D.πm23.在一个不透明的袋子里装有若干个白球和15个黄球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现摸到黄球的频率稳定在0.75,则袋中白球有()A.5个 B.15个 C.20个 D.35个4.如图,为线段上一点,与交与点,,交与点,交与点,则下列结论中错误的是()A. B. C. D.5.由的图像经过平移得到函数的图像说法正确的是()A.先向左平移6个单位长度,然后向上平移7个单位长度B.先向左平移6个单位长度,然后向下平移7个单位长度C.先向右平移6个单位长度,然后向上平移7个单位长度D.先向右平移6个单位长度,然后向下平移7个单位长度6.有一个正方体,6个面上分别标有1~6这6个整数,投掷这个正方体一次,则出现向上一面的数字是奇数的概率为()A. B. C. D.7.在中,,,,则直角边的长是()A. B. C. D.8.如图在正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是()A. B. C. D.9.在Rt△ABC中,,如果∠A=,,那么线段AC的长可表示为().A.; B.; C.; D..10.一个不透明的袋中,装有2个黄球、3个红球和5个白球,它们除颜色外都相同.从袋中任意摸出一个球,是白球的概率是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在等边三角形ABC中,AC=9,点O在AC上,且AO=3,点P是AB上的一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD,要使点D恰好落在BC上,则AP的长是________.12.已知一扇形,半径为6,圆心角为120°,则所对的弧长为___.13.已知方程有一个根是,则__________.14.在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为12m,那么这栋建筑物的高度为_____m.15.如图,在Rt△ABC中,∠C=90°,AB=10,AC=8,E是AC上一点,AE=5,ED⊥AB,垂足为D,求AD的长16.一个圆锥的母线长为5cm,底面圆半径为3cm,则这个圆锥的侧面积是____cm².(结果保留π).17.如图,在中,,,,、分别是边、上的两个动点,且,是的中点,连接,,则的最小值为__________.18.太原市某学校门口的栏杆如图所示,栏杆从水平位置绕定点旋转到位置,已知栏杆的长为的长为点到的距离为.支柱的高为,则栏杆端离地面的距离为__________.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,的顶点坐标分别为,,.(1)的面积是_______;(2)请以原点为位似中心,画出,使它与的相似比为,变换后点的对应点分别为点,点在第一象限;(3)若为线段上的任一点,则变换后点的对应点的坐标为_______.20.(6分)有一张长,宽的长方形硬纸片(如图1),截去四个全等的小正方形之后,折成无盖的纸盒(如图2).若纸盒的底面积为,求纸盒的高.21.(6分)解方程:x2﹣6x﹣40=022.(8分)某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.(1)如果果园既要让橙子的总产量达到60375个,又要确保每一棵橙子树接受到的阳光照射尽量少受影响,那么应该多种多少棵橙子树?(2)增种多少棵橙子树,可以使果园橙子的总产量最多?最多为多少?23.(8分)如图1,⊙O是△ABC的外接圆,AB是直径,D是⊙O外一点且满足∠DCA=∠B,连接AD.(1)求证:CD是⊙O的切线;(2)若AD⊥CD,AB=10,AD=8,求AC的长;(3)如图2,当∠DAB=45°时,AD与⊙O交于E点,试写出AC、EC、BC之间的数量关系并证明.24.(8分)如图,在矩形中,,点在直线上,与直线相交所得的锐角为60°.点在直线上,,直线,垂足为点且,以为直径,在的左侧作半圆,点是半圆上任一点.发现:的最小值为_________,的最大值为__________,与直线的位置关系_________.思考:矩形保持不动,半圆沿直线向左平移,当点落在边上时,求半圆与矩形重合部分的周长和面积.

25.(10分)(1)问题发现:如图1,在等腰直角三角形中,,将边绕点顺时针旋转90°得到线段,连接,则的面积为__________;(请用含的式子表示的面积;提示:过点作边上的高)(2)类比探究:如图2,在一般的中,,将边绕点顺时针旋转90°得到线段,连接.(1)中的结论是否成立,若成立,请说明理由.(3)拓展应用:如图3,在等腰三角形中,,将边绕点顺时针旋转90°得到线段,连接.试直接用含的式子表示的面积.(不写探究过程)26.(10分)某校九年级(1)班甲、乙两名同学在5次引体向上测试中的有效次数如下:甲:8,8,7,8,1.乙:5,1,7,10,1.甲、乙两同学引体向上的平均数、众数、中位数、方差如下:平均数众数中位数方差甲880.4乙13.2根据以上信息,回答下列问题:(1)表格中_______,_______,_______.(填数值)(2)体育老师根据这5次的成绩,决定选择甲同学代表班级参加年级引体向上比赛,选择甲的理由是_______________________________________.班主任李老师根据去年比赛的成绩(至少1次才能获奖),决定选择乙同学代表班级参加年级引体向上比赛,选择乙的理由是_______________________________________.(3)乙同学再做一次引体向上,次数为n,若乙同学6次引体向上成绩的中位数不变,请写出n的最小值.

参考答案一、选择题(每小题3分,共30分)1、C【分析】判断一元二次方程根的判别式的大小即可得解.【详解】由题意可可知:△=(﹣k﹣3)2﹣4(2k+2)=k2﹣2k+1=(k﹣1)2≥0,故选:C.【点睛】本题考查一元二次方程ax2+bx+c=0(a≠0)根的判别式:(1)当△=b2﹣4ac>0时,方程有两个不相等的实数根;(2)当△=b2﹣4ac=0时,方程有有两个相等的实数根;(3)当△=b2﹣4ac<0时,方程没有实数根.2、B【解析】小羊的最大活动区域是一个半径为6、圆心角为90°和一个半径为2、圆心角为60°的小扇形的面积和.所以根据扇形的面积公式即可求得小羊的最大活动范围.【详解】大扇形的圆心角是90度,半径是6,如图,所以面积==9πm2;小扇形的圆心角是180°-120°=60°,半径是2m,则面积=π(m2),则小羊A在草地上的最大活动区域面积=9π+π=π(m2).故选B.【点睛】本题考查了扇形的面积的计算,本题的关键是从图中找到小羊的活动区域是由哪几个图形组成的,然后分别计算即可.3、A【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:设袋中白球有x个,根据题意得:=0.75,解得:x=5,经检验:x=5是分式方程的解,故袋中白球有5个.故选A.【点睛】此题考查了利用概率的求法估计总体个数,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=是解题关键.4、A【分析】先根据条件证明△PCF∽△BCP,利用相似三角形的性质:对应角相等,再证明△APD∽△PGD,进而证明△APG∽△BFP再证明时注意图形中隐含的相等的角,故可进行判断.【详解】∵∠CPD=∠B,∠C=∠C,∴△PCF∽△BCP.∵∠CPD=∠A,∠D=∠D,∴△APD∽△PGD.∵∠CPD=∠A=∠B,∠APG=∠B+∠C,∠BFP=∠CPD+∠C∴∠APG=∠BFP,∴△APG∽△BFP.故结论中错误的是A,故选A.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知相似三角形的判定定理.5、C【分析】分别确定出两个抛物线的顶点坐标,再根据左减右加,上加下减确定平移方向即可得解.【详解】解:抛物线y=2x2的顶点坐标为(0,0),

抛物线y=2(x-6)2+1的顶点坐标为(6,1),所以,先向右平移6个单位,再向上平移1个单位可以由抛物线y=2x2平移得到抛物线y=2(x-6)2+1.

故选:C.【点睛】本题考查了二次函数图象与几何变换,利用点的平移规律左减右加,上加下减解答是解题的关键.6、A【解析】投掷这个正方体会出现1到6共6个数字,每个数字出现的机会相同,即有6个可能结果,而这6个数中有1,3,5三个奇数,则有3种可能,根据概率公式即可得出答案.【详解】解:∵在1~6这6个整数中有1,3,5三个奇数,∴当投掷这个正方体一次,则出现向上一面的数字为奇数的概率是:=.故选:A.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.7、B【分析】根据余弦的定义求解.【详解】解:∵在Rt△ABC中,∠C=90°,cosB=,

∴BC=10cos40°.

故选:B.【点睛】本题考查解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.8、C【分析】可利用正方形的边把对应的线段表示出来,利用一角相等且夹边对应成比例两个三角形相似,根据各个选项条件筛选即可.【详解】解:根据勾股定理,AC=,BC=,AB=所以,,,,则+=所以,利用勾股定理逆定理得△ABC是直角三角形

所以,=A.不存在直角,所以不与△ABC相似;B.两直角边比(较长的直角边:较短的直角边)=≠2,所以不与△ABC相似;C.选项中图形是直角三角形,且两直角边比(较长的直角边:较短的直角边)=2,故C中图形与所给图形的三角形相似.D.不存在直角,所以不与△ABC相似.

故选:C.【点睛】此题考查了勾股定理在直角三角形中的运用,及判定三角形相似的方法,本题中根据勾股定理计算三角形的三边长是解题的关键.9、B【分析】根据余弦函数是邻边比斜边,可得答案.【详解】解:由题意,得,,故选:.【点睛】本题考查了锐角三角函数的定义,利用余弦函数的定义是解题关键.10、A【分析】由题意可得,共有10种等可能的结果,其中从口袋中任意摸出一个球是白球的有5种情况,利用概率公式即可求得答案.【详解】解:∵从装有2个黄球、3个红球和5个白球的袋中任意摸出一个球有10种等可能结果,其中摸出的球是白球的结果有5种,∴从袋中任意摸出一个球,是白球的概率是=,故选A.【点睛】此题考查了概率公式,明确概率的意义是解答问题的关键,用到的知识点为:概率=所求情况数与总情况数之比.二、填空题(每小题3分,共24分)11、6【解析】由题意得,∵∠A+∠APO=∠POD+∠COD,∠A=∠POD=60°,∴∠APO=∠COD,在△AOP与△CDO中,,∴△AOP≌△CDO(AAS),∴AP=CO=AC﹣AO=9﹣3=6.故答案为6.12、4π.【分析】根据弧长公式求弧长即可.【详解】此扇形的弧长==4π,故答案为:4π.【点睛】此题考查的是求弧长,掌握弧长公式:是解决此题的关键.13、1【分析】把方程的根x=1代入即可求解.【详解】把x=1代入得:1-m+n=0m-n=1故答案为:1【点睛】本题考查的是方程的解的定义,理解方程解的定义是关键.14、1.【解析】试题解析:设这栋建筑物的高度为由题意得解得:即这栋建筑物的高度为故答案为1.15、AD=1【分析】通过证明△ADE∽△ACB,可得,即可求解.【详解】解:∵∠C=∠ADE=90°,∠A=∠A,∴△ADE∽△ACB,∴∴,∴AD=1.【点睛】本题考查了相似三角形的判定与性质定理,熟练掌握定理是解题的关键.16、15π【分析】圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.【详解】解:圆锥的侧面积=π×3×5=15πcm2故答案为:15π.【点睛】本题考查圆锥侧面积公式的运用,掌握公式是关键.17、【分析】先在CB上取一点F,使得CF=,再连接PF、AF,然后利用相似三角形的性质和勾股定理求出AF,即可解答.【详解】解:如图:在CB上取一点F,使得CF=,再连接PF、AF,∵∠DCE=90°,DE=4,DP=PE,∴PC=DE=2,∵,∴又∵∠PCF=∠BCP,∴△PCF∽△BCP,∴∴PA+PB=PA+PF,∵PA+PF≥AF,AF=∴PA+PB≥.∴PA+PB的最小值为,故答案为.【点睛】本题考查了勾股定理、相似三角形的判定和性质等知识,正确添加常用辅助线、构造相似三角形是解答本题的关键.18、【分析】作DF⊥ABCG⊥AB,根据题意得△ODF∽△OCB,,得出DF,D端离地面的距离为DF+OE,即可求出.【详解】解:如图作DF⊥AB垂足为F,CG⊥AB垂足为G;∴∠DFO=∠CGO=90°∵∠DOA=∠COB∴△DFO∽△CGO则∵CG=0.3mOD=OA=3mOC=OB=3.5-3=0.5m∴DF=1.8m则D端离地面的距离=DF+OE=1.8+0.5=2.3m【点睛】此题主要考查了相似三角形的应用,熟练掌握相似三角形的判定与性质是解题的关键.三、解答题(共66分)19、(1)12;(2)见解析;(3).【分析】(1)根据三角形的面积公司求出的面积即可;(2)根据与的相似比为,点在第一象限,得出,,的坐标,连接起来即可;(3)根据与的相似比为,点的坐标为点P横纵坐标的一半.【详解】(1)根据三角形面积公式得∴的面积是12故答案为:12;(2)如图所示(3)∵与的相似比为∴变换后点的横坐标为点P横坐标的一半,点的纵坐标为点P纵坐标的一半∴则变换后点的对应点的坐标为.【点睛】本题考查了坐标轴的作图和变换问题,掌握三角形的面积公式以及相似三角形的性质是解题的关键.20、纸盒的高为.【分析】设纸盒的高是,根据题意,其底面的长宽分别为(40-2x)和(30-2x),根据长方形面积公式列方程求解即可.【详解】解:设纸盒的高是.依题意,得.整理得.解得,(不合题意,舍去).答:纸盒的高为.【点睛】本题考查一元二次方程的应用,根据题意用含x的式子表示底面的长和宽,正确列方程,解方程是本题的解题关键.21、x1=10,x2=﹣1.【分析】用因式分解法即可求解.【详解】解:x2﹣6x﹣10=0,(x﹣10)(x+1)=0,∴x﹣10=0或x+1=0,∴x1=10,x2=﹣1.【点睛】本题考查一元二次方程的解法,解题的关键是掌握一元二次方程的解法,有直接开平方法、配方法、公式法、因式分解法.22、(1)应该多种5棵橙子树;(2)增种10棵橙子树,可以使果园橙子的总产量最多.最多为60500个.【分析】(1)根据题意设应该多种x棵橙子树,根据等量关系果园橙子的总产量要达到60375个,列出方程求解即可;(2)根据题意设增种y棵树,就可求出每棵树的产量,然后求出总产量,再配方即可求解.【详解】(1)设应该多种x棵橙子树,根据题意得:(100+x)(600-5x)=60375,解得:,(不合题意,舍去)答:应该多种5棵橙子树.(2)设果园橙子的总产量为y个,根据题意得:.答:增种10棵橙子树,可以使果园橙子的总产量最多.最多为60500个.【点睛】本题主要考查一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,注意配方法的运用.23、(1)见解析;(2)AC的长为4;(3)AC=BC+EC,理由见解析【分析】(1)连接OC,由直径所对圆周角是直角可得∠ACB=90°,由OC=OB得出∠OCB=∠B,由因为∠DCA=∠B,从而可得∠DCA=∠OCB,即可得出∠DCO=90°;(2)由题意证明△ACD∽△ABC,根据对应边成比例列出等式求出AC即可;(3)在AC上截取AF使AF=BC,连接EF、BE,通过条件证明△AEF≌△BEC,根据性质推出△EFC为等腰直角三角形,即可证明AC、EC、BC的数量关系.【详解】(1)证明:连接OC,如图1所示:∵AB是⊙O的直径,∴∠ACB=90°,∵OC=OB,∴∠B=∠OCB,∵∠DCA=∠B,∴∠DCA=∠OCB,∴∠DCO=∠DCA+∠OCA=∠OCB+∠OCA=∠ACB=90°,∴CD⊥OC,∴CD是⊙O的切线;(2)解:∵AD⊥CD∴∠ADC=∠ACB=90°又∵∠DCA=∠B∴△ACD∽△ABC∴,即,∴AC=4,即AC的长为4;(3)解:AC=BC+EC;理由如下:在AC上截取AF使AF=BC,连接EF、BE,如图2所示:∵AB是直径,∴∠ACB=∠AEB=90°,∵∠DAB=45°,∴△AEB为等腰直角三角形,∴∠EAB=∠EBA=∠ECA=45°,AE=BE,在△AEF和△BEC中,,∴△AEF≌△BEC(SAS),∴EF=CE,∠AFE=∠BCE=∠ACB+∠ECA=90°+45°=135°,∴∠EFC=180°﹣∠AFE=180°﹣135°=45°,∴∠EFC=∠ECF=45°,∴△EFC为等腰直角三角形.∴CF=EC,∴AC=AF+CF=BC+EC.【点睛】本题考查圆与三角形的结合,关键在于牢记基础性质,利用三角形的相似对应边以及三角形的全等进行计算.24、,10,;,.【分析】发现:先依据勾股定理求得AO的长,然后由圆的性质可得到OM=1,当点M在AO上时,AM有最小值,当点M与点E重合时,AM有最大值,然后过点B作BG⊥l,垂足为G,接下来求得BG的长,从而可证明四边形OBGF为平行四边形,于是可得到OB与直线1的位置关系.

思考:连结OG,过点O作OH⊥EG,依据垂径定理可知GE=2HE,然后在△EOH中,依据特殊锐角三角函数值可求得HE的长,从而得到EG的长,接下来求得∠EOG得度数,依据弧长公式可求得弧EG的长,利用扇形面积减去三角形面积即可得到面积.【详解】解:发现:由题意可知OM=OF=1,AF=8,EF⊥l,

∴OA=.

当点M在线段OA上时,AM有最小值,最小值为=.

当点M与点E重合时,AM有最大值,最大值=.

如图1所示:过点B作BG⊥l,垂足为G.

∵∠DAF=60°,∠BAD=90°,

∴∠BAG=10°.

∴GB=AB=1.

∴OF=BG=1,

又∵GB∥OF,

∴四边形OBGF为平行四边形,

∴OB∥FG,即OB∥l.故答案为:,10,;思考:如图2所示:连结,过点作,∵,∴,∴,∴,∴,弧的长,∴半圆与矩形重合部分的周长,∴.【点睛】本题考查了求弓形的周长和面积,考查了弧长公式,垂径定理,10°直角三角形的性质,以及勾股定理,解题的关键是熟练掌握题意,得到重合的图形是弓形,利用所学的知识求出弓形的周长和面积.注意了利用数形结合的思想进行解题.25、(1);(2)成立,理由见解析;(3)【分析】(1)如图1,过点D作BC的垂线,与BC的延长线交于点E,由垂直的性质就可以得出△ABC≌△BDE,就有DE=BC=a进而由三角形的面积公式得出结论;

(2)如图2,过点D作BC的垂线,与BC的延长线交于点E,由垂直的性质就可以得出△ABC≌△BDE,就有.DE=BC=a进而由三角形的面积公式得出结论;

(3)如图3,过点A作AF⊥BC与F,过点D作DE⊥BC的延长线于点E,由等腰三角形的性质可以得出BF=BC,由条件可以得出△AFB≌△BED就可以得出BF=DE,由三角形的面积公式就可以得出结论.【详解】解:(1)如图1,过点D作DE⊥CB交CB的延长线于E,

∴∠BED=∠ACB=90°,

由旋转知

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论