2023年河南省洛阳李村一中学数学九年级第一学期期末达标测试试题含解析_第1页
2023年河南省洛阳李村一中学数学九年级第一学期期末达标测试试题含解析_第2页
2023年河南省洛阳李村一中学数学九年级第一学期期末达标测试试题含解析_第3页
2023年河南省洛阳李村一中学数学九年级第一学期期末达标测试试题含解析_第4页
2023年河南省洛阳李村一中学数学九年级第一学期期末达标测试试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年河南省洛阳李村一中学数学九年级第一学期期末达标测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.通过对《一元二次方程》全章的学习,同学们掌握了一元二次方程的三种解法:配方法、公式法、因式分解法,其实,每种解法都是把一个一元二次方程转化为两个一元一次方程来解,体现的基本思想是()A.转化 B.整体思想 C.降次 D.消元2.已知一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为,则a等于()A. B. C. D.3.如图,的半径为3,是的弦,直径,,则的长为()A. B. C. D.4.已知点A(﹣3,y1),B(﹣2,y2),C(3,y3)都在反比例函数y=(k<0)的图象上,则()A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y2<y1<y35.若将抛物线y=x2平移,得到新抛物线,则下列平移方法中,正确的是()A.向左平移3个单位 B.向右平移3个单位C.向上平移3个单位 D.向下平移3个单位6.一种商品原价元,经过两次降价后每盒26元,设两次降价的百分率都为,则满足等式()A. B. C. D.7.正六边形的周长为12,则它的面积为()A. B. C. D.8.在平面直角坐标系中,将抛物线向上平移1个单位后所得抛物线的解析式为()A. B. C. D.9.菱形中,,对角线相交于点,以为圆心,以3为半径作,则四个点在上的个数为()A.1 B.2 C.3 D.410.下列说法正确的是().A.一颗质地均匀的骰子已连续抛掷了2000次.其中,抛掷出5点的次数最多,则第2001次一定抛掷出5点.B.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C.天气预报说:明天下雨的概率是50%,所以明天将有一半时间在下雨D.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等11.某校准备修建一个面积为200平方米的矩形活动场地,它的长比宽多12米,设场地的宽为x米,根据题意可列方程为()A.x(x﹣12)=200 B.2x+2(x﹣12)=200C.x(x+12)=200 D.2x+2(x+12)=20012.如图,A、B、C是⊙O上的三点,已知∠O=50°,则∠C的大小是()A.50° B.45° C.30° D.25°二、填空题(每题4分,共24分)13.计算:|﹣3|﹣sin30°=_____.14.某商品连续两次降低10%后的价格为a元,则该商品的原价为______.15.一件商品的原价是100元,经过两次提价后的价格为121元,设平均每次提价的百分率都是x.根据题意,可列出方程___________________.16.如图,为外一点,切于点,若,,则的半径是______.17.设a,b是一个直角三角形两条直角边的长,且,则这个直角三角形的斜边长为________.18.抛物线y=(x+2)2+1的顶点坐标为_____.三、解答题(共78分)19.(8分)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,把△ABC绕点C逆时针旋转90°后得到△A1B1C.(1)画出△A1B1C,;(2)求在旋转过程中,CA所扫过的面积.20.(8分)如图,在网格纸中,、都是格点,以为圆心,为半径作圆,用无刻度的直尺完成以下画图:(不写画法)(1)在圆①中画圆的一个内接正六边形;(2)在图②中画圆的一个内接正八边形.21.(8分)已知关于的一元二次方程.(1)请判断是否可为此方程的根,说明理由.(2)是否存在实数,使得成立?若存在,请求出的值;若不存在,请说明理由.22.(10分)如图,在中,连接,点,分别是的点(点不与点重合),,相交于点.(1)求,的长;(2)求证:~;(3)当时,请直接写出的长.23.(10分)计算:|2﹣|+()﹣1+﹣2cos45°24.(10分)如图,是的直径,点在的延长线上,平分交于点,且的延长线,垂足为点.(1)求证:直线是的切线;(2)若,,求的长.25.(12分)如图,在平面直角坐标系中,抛物线y=﹣x2+4x+5与y轴交于点A,与x轴的正半轴交于点C.(1)求直线AC解析式;(2)过点A作AD平行于x轴,交抛物线于点D,点F为抛物线上的一点(点F在AD上方),作EF平行于y轴交AC于点E,当四边形AFDE的面积最大时?求点F的坐标,并求出最大面积;(3)若动点P先从(2)中的点F出发沿适当的路径运动到抛物线对称轴上点M处,再沿垂直于y轴的方向运动到y轴上的点N处,然后沿适当的路径运动到点C停止,当动点P的运动路径最短时,求点N的坐标,并求最短路径长.26.已知关于的方程.(1)若该方程有两个不相等的实数根,求实数的取值范围;(2)若该方程的一个根为1,求的值及该方程的另一根.

参考答案一、选择题(每题4分,共48分)1、C【分析】根据“每种解法都是把一个一元二次方程转化为两个一元一次方程来解”进行判断即可.【详解】每种解法都是把一个一元二次方程转化为两个一元一次方程来解,也就是“降次”,故选:C.【点睛】本题考查一元二次方程解法的理解,读懂题意是关键.2、A【详解】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.根据题意得:,解得:a=1,经检验,a=1是原分式方程的解,故本题选A.3、C【分析】连接OC,利用垂径定理以及圆心角与圆周角的关系求出;再利用弧长公式即可求出的长.【详解】解:连接OC(同弧所对的圆心角是圆周角的2倍)∵直径∴=(垂径定理)∴故选C【点睛】本题考查了垂径定理、圆心角与圆周角以及利用弧长公式求弧长,熟练掌握相关定理和公式是解答本题的关键.4、C【分析】先根据函数解析式中的比例系数k确定函数图象所在的象限,再根据各象限内点的坐标特点及函数的增减性解答.【详解】∵在反比例函数y=中,k<0,∴此函数图象在二、四象限,∵﹣3<﹣1<0,∴点A(﹣3,y1),B(﹣1,y1)在第二象限,∴y1>0,y1>0,∵函数图象在第二象限内为增函数,﹣3<﹣1<0,∴0<y1<y1.∵3>0,∴C(3,y3)点在第四象限,∴y3<0,∴y1,y1,y3的大小关系为y3<y1<y1.故选:C.【点睛】此题考查的是反比例函数图象上点的坐标特点及平面直角坐标系中各象限内点的坐标特点,比较简单.5、A【解析】先确定抛物线y=x1的顶点坐标为(0,0),抛物线y=(x+3)1的顶点坐标为(-3,0),然后利用顶点的平移情况确定抛物线的平移情况.【详解】解:抛物线y=x1的顶点坐标为(0,0),抛物线y=(x+3)1的顶点坐标为(-3,0),

因为点(0,0)向左平移3个单位长度后得到(-3,0),

所以把抛物线y=x1向左平移3个单位得到抛物线y=(x+3)1.

故选:A.【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.6、C【分析】等量关系为:原价×(1-下降率)2=26,把相关数值代入即可.【详解】解:第一次降价后的价格为45(1-x),

第二次降价后的价格为45(1-x)·(1-x)=45(1-x)2,

∴列的方程为45(1-x)2=26,

故选:C.【点睛】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.7、D【分析】首先根据题意画出图形,即可得△OBC是等边三角形,又由正六边形ABCDEF的周长为12,即可求得BC的长,继而求得△OBC的面积,则可求得该六边形的面积.【详解】解:如图,连接OB,OC,过O作OM⊥BC于M,

∴∠BOC=×360°=60°,

∵OB=OC,∴△OBC是等边三角形,

∵正六边形ABCDEF的周长为12,

∴BC=12÷6=2,

∴OB=BC=2,∴BM=BC=1,

∴OM==,

∴S△OBC=×BC×OM=×2×=,

∴该六边形的面积为:×6=6.

故选:D.【点睛】此题考查了圆的内接六边形的性质与等边三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.8、B【分析】根据抛物线的平移规律:括号里左加右减,括号外上加下减,即可得出结论.【详解】解:将抛物线向上平移1个单位后所得抛物线的解析式为故选B.【点睛】此题考查的是求抛物线平移后的解析式,掌握抛物线的平移规律:括号里左加右减,括号外上加下减,是解决此题的关键.9、B【分析】根据菱形的性质可知,AO=CO=3,OB=OD,AC⊥BD,再根据勾股定理求出BO的长,从而可以判断出结果.【详解】解:如图,由菱形的性质可得,AO=CO=3,BO=DO,AC⊥BD,在Rt△ABO中,BO==DO≠3,∴点A,C在上,点B,D不在上.故选:B.【点睛】本题考查菱形的性质、点与圆的位置关系以及勾股定理,掌握基本性质和概念是解题的关键.10、D【解析】概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.【详解】A.

是随机事件,错误;

B.

中奖的概率是1%,买100张该种彩票不一定会中奖,错误;

C.

明天下雨的概率是50%,是说明天下雨的可能性是50%,而不是明天将有一半时间在下雨,错误;

D.

正确。

故选D.【点睛】本题考查概率的意义,解题的关键是掌握概率的意义.11、C【解析】解:∵宽为x,长为x+12,∴x(x+12)=1.故选C.12、D【分析】直接根据圆周角定理即可得出结论.【详解】解:∵∠C与∠AOB是同弧所对的圆周角与圆心角,

∵∠AOB=2∠C=50°,

∴∠C=∠AOB=25°.

故选:D.【点睛】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.二、填空题(每题4分,共24分)13、【分析】利用绝对值的性质和特殊角的三角函数值计算即可.【详解】原式=.故答案为:.【点睛】本题主要考查绝对值的性质及特殊角的三角函数值,掌握绝对值的性质及特殊角的三角函数值是解题的关键.14、元【分析】设商品原价为x元,则等量关系为原价=现价,根据等量关系列出方程即可求解.【详解】设该商品的原价为x元,根据题意得解得故答案为元.【点睛】本题考查了一元二次方程实际应用中的增长率问题,本剧题意列出方程是本题的关键.15、100(1+x)2=1.【详解】设平均每次提价的百分率为x,根据原价为100元,表示出第一次提价后的价钱为100(1+x)元,第二次提价的价钱为100(1+x)2元,根据两次提价后的价钱为1元,列出关于x的方程100(1+x)2=1.考点:一元二次方程的应用.16、1【分析】由题意连接OA,根据切线的性质得出OA⊥PA,由已知条件可得△OAP是等腰直角三角形,进而可求出OA的长,即可求解.【详解】解:连接OA,∵PA切⊙O于点A,∴OA⊥PA,∴∠OAP=90°,∵∠APO=45°,∴OA=PA=1,故答案为:1.【点睛】本题考查切线的性质即圆的切线垂直于经过切点的半径.若出现圆的切线,连接过切点的半径,构造定理图,得出垂直关系.17、【分析】此题实际上求的值.设t=a2+b2,将原方程转化为关于t的一元二次方程t(t+1)=12,通过解方程求得t的值即可.【详解】设t=a2+b2,则由原方程,得t(t+1)=12,整理,得(t+4)(t-3)=0,解得t=3或t=-4(舍去).则a2+b2=3,∵a,b是一个直角三角形两条直角边的长,∴这个直角三角形的斜边长为.故答案是:.【点睛】此题考查了换元法解一元二次方程,以及勾股定理,熟练运用勾股定理是解本题的关键.18、(﹣2,1)【分析】根据题目中二次函数的顶点式可以直接写出它的顶点坐标.【详解】由抛物线的顶点坐标可知,抛物线y=(x+2)2+1的顶点坐标是(﹣2,1).故答案为:(﹣2,1).【点睛】本题考查二次函数的性质,解答本题的关键是由顶点式可以直接写出二次函数的顶点坐标.三、解答题(共78分)19、(1)见解析;(2).【分析】(1)根据旋转中心方向及角度找出点A、B的对应点A1、B1的位置,然后顺次连接即可.

(2)利用勾股定理求出AC的长,CA所扫过的面积等于扇形CAA1的面积,然后列式进行计算即可.【详解】解:(1)△A1B1C为所求作的图形:(2)∵AC=,∠ACA1=90°,∴在旋转过程中,CA所扫过的面积为:.【点睛】本题考查的知识点是作图-旋转变换,扇形面积的计算,解题的关键是熟练的掌握作图-旋转变换,扇形面积的计算.20、(1)见解析;(2)见解析【分析】(1)设AO的延长线与圆交于点D,根据正六边形的性质,点D即为正六边形的一个顶点,且正六边形的边长等于圆的半径,根据垂直平分线的性质即可确定其它的顶点;(2)先求出内接八边形的中心角,然后根据正方形的性质即可找到各个顶点.【详解】(1)设AO的延长线与圆交于点D,根据圆的内接正六边形的性质,点D即为正六边形的一个顶点,且正六边形的边长等于圆的半径,即OB=AB,故在图中找到AO的中垂线与圆的交点即为正六边形的顶点B和F;同理:在图中找到OD的中垂线与圆的交点即为正六边形的顶点C和E,连接AB、BC、CD、DE、EF、FA,如图①,正六边形即为所求.(2)圆的内接八边形的中心角为360°÷8=45°,而正方形的对角线与边的夹角也为45°∴在如②图所示的正方形OMNP中,连接对角线ON并延长,交圆于点B,此时∠AON=45°;∵∠NOP=45°,∴OP的延长线与圆的交点即为点C同理,即可确定点D、E、F、G、H的位置,顺次连接,如图②,正八边形即为所求.【点睛】此题考查的是画圆的内接正六边形和内接正八边形,掌握圆的内接正六边形和内接正八边形的性质和中心角的求法是解决此题的关键.21、(1)不是此方程的根,理由见解析;(2)存在,或【分析】(1)将代入一元二次方程中,得到一个关于p的一元二次方程,然后用根的判别式验证关于p的一元二次方程是否存在实数根即可得出答案;(2)根据一元二次方程根与系数的关系可知,,然后代入到中,解一元二次方程,若有解,则存在这样的p,反之则不存在.【详解】(1)若是方程的根,则.,∴不是此方程的根.(2)存在实数,使得成立.∵,且.∴即.∴∴存在实数,当或时,成立【点睛】本题主要考查一元二次方程根与系数的关系,根的判别式,掌握一元二次方程根与系数的关系是解题的关键.22、(1)AD=10,BD=10;(2)见解析;(3)AG=.【分析】(1)由可证明△ABC∽△DAC,通过相似比即可求出AD,BD的长;(2)由(1)可证明∠B=∠DAB,再根据已知条件证明∠AFC=∠BEF即可;(3)过点C作CH∥AB,交AD的延长线于点H,根据平行线的性质得到,计算出CH和AH的值,由已知条件得到≌,设AG=x,则AF=15-x,HG=18-x,再由平行线的性质得到,表达出即可解出x,即AG的值.【详解】解:(1)∵,∴,又∵∠ACB=∠DCA,∴△ABC∽△DAC,∴,即,解得:CD=8,AD=10,∴BD=BC-CD=18-8=10,∴AD=10,BD=10;(2)由(1)可知,AD=BD=10,∴∠B=∠DAB,∵∠AFE=∠B+∠BEF,∴∠AFC+∠CFE=∠B+∠BEF,∵,∴∠AFC=∠BEF,又∵∠B=∠DAB,∴~;(3)如图,过点C作CH∥AB,交AD的延长线于点H,∴,即,解得:CH=12,HD=8,∴AH=AD+HD=18,若,则≌;∴BF=AG,设AG=x,则AF=15-x,HG=18-x,∵CH∥AB,∴,即,解得:,(舍去)∴AG=.【点睛】本题考查了相似三角形的判定与性质以及平行线分线段成比例,解题的关键是熟悉相似三角形的判定,并灵活作出辅助线.23、1【分析】根据绝对值、负次数幂、二次根式、三角函数的性质计算即可.【详解】原式=2﹣+3+2﹣2×=2﹣+3+2﹣=(2+3)+(﹣+2﹣)=1+0=1.【点睛】本题考查绝对值、负次数幂、二次根式、三角函数的计算,关键在于牢记相关基础知识.24、(1)见解析;(2)【分析】(1)连接OC,由角平分线的性质和等腰三角形的性质可得∠DAC=∠EAC,可得AE∥OC,由平行线的性质可得∠OCD=90°,可得结论;

(2)利用勾股定理得出CD,再利用平行线分线段成比例进行计算即可.【详解】证明:(1)连接∵,∴,∵,∴,∴,∵∴,∴,∴是的切线(2)∵,∴,又∵,∴∵,∴∴∴∴.【点睛】此题考查切线的判定和性质,等腰三角形的性质,平行线分线段成比例,熟练运用切线的判定和性质是解题的关键.25、(1)y=﹣x+5;(2)点F(,);四边形AFDE的面积的最大值为;(3)点N(0,),点P的运动路径最短距离=2+.【分析】(1)先求出点A,点C坐标,用待定系数法可求解析式;(2)先求出点D坐标,设点F(x,﹣x2+4x+5),则点E坐标为(x,﹣x+5),即可求EF=﹣x2+5x,可求四边形AFDE的面积,由二次函数的性质可求解;(3)由动点P的运动路径=FM+MN+NC=GM+2+MH,则当点G,点M,点H三点共线时,动点P的运动路径最小,由两点距离公式可求解.【详解】解:(1)∵抛物线y=﹣x2+4x+5与y轴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论