2023-2024学年山东省烟台市芝罘区数学九上期末统考试题含解析_第1页
2023-2024学年山东省烟台市芝罘区数学九上期末统考试题含解析_第2页
2023-2024学年山东省烟台市芝罘区数学九上期末统考试题含解析_第3页
2023-2024学年山东省烟台市芝罘区数学九上期末统考试题含解析_第4页
2023-2024学年山东省烟台市芝罘区数学九上期末统考试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年山东省烟台市芝罘区数学九上期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,在△ABC中,cosB=,sinC=,AC=5,则△ABC的面积是()A. B.12 C.14 D.212.如图,是等边三角形,且与轴重合,点是反比例函数的图象上的点,则的周长为()A. B. C. D.3.下列命题中,真命题是()A.所有的平行四边形都相似 B.所有的矩形都相似 C.所有的菱形都相似 D.所有的正方形都相似4.在下列四个图案中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.5.一元二次方程的根为()A. B. C. D.6.计算的结果等于()A.-6 B.6 C.-9 D.97.如图,是正内一点,若将绕点旋转到,则的度数为()A. B.C. D.8.如图,在矩形ABCD中,AB=4,AD=3,若以A为圆心,4为半径作⊙A.下列四个点中,在⊙A外的是()A.点A B.点B C.点C D.点D9.如图,点A是双曲线在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,点C在第一象限,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线上运动,则k的值为()A.1 B.2 C.3 D.410.两个连续奇数的积为323,求这两个数.若设较小的奇数为,则根据题意列出的方程正确的是()A. B.C. D.11.若一元二次方程的两根为和,则的值等于()A.1 B. C. D.12.小新抛一枚质地均匀的硬币,连续抛三次,硬币落地均正面朝上,如果他第四次抛硬币,那么硬币正面朝上的概率为()A. B. C.1 D.二、填空题(每题4分,共24分)13.一元二次方程x2﹣x﹣=0配方后可化为__________.14.如果两个相似三角形的面积的比是4:9,那么它们对应的角平分线的比是_____.15.如图,在△ABC中,BC=12,BC上的高AH=8,矩形DEFG的边EF在边BC上,顶点D、G分别在边AB、AC上.设DE,矩形DEFG的面积为,那么关于的函数关系式是______.(不需写出x的取值范围).16.已知,则的值是_____________.17.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为_______度.18.如图,Rt△ABC中,∠C=90°,AC=4,BC=3,点D是AB边上一点(不与A、B重合),若过点D的直线截得的三角形与△ABC相似,并且平分△ABC的周长,则AD的长为____.三、解答题(共78分)19.(8分)为加强我市创建文明卫生城市宣传力度,需要在甲楼A处到E处悬挂一幅宣传条幅,在乙楼顶部D点测得条幅顶端A点的仰角∠ADF=45°,条幅底端E点的俯角为∠FDE=30°,DF⊥AB,若甲、乙两楼的水平距离BC为21米,求条幅的长AE约是多少米?(,结果精确到0.1米)20.(8分)邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,称为第二次操作;……依次类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形,如图1,平行四边形中,若,则平行四边形为1阶准菱形.(1)判断与推理:①邻边长分别为2和3的平行四边形是__________阶准菱形;②小明为了剪去一个菱形,进行如下操作:如图2,把平行四边形沿着折叠(点在上)使点落在边上的点,得到四边形,请证明四边形是菱形.(2)操作、探究与计算:①已知平行四边形的邻边分别为1,裁剪线的示意图,并在图形下方写出的值;②已知平行四边形的邻边长分别为,满足,请写出平行四边形是几阶准菱形.21.(8分)如图,△ABC的坐标依次为(﹣1,3)、(﹣4,1)、(﹣2,1),将△ABC绕原点O顺时针旋转180°得到△A1B1C1.(1)画出△A1B1C1;(2)求在此变换过程中,点A到达A1的路径长.22.(10分)如图,在中,,点为边的中点,请按下列要求作图,并解决问题:(1)作点关于的对称点;(2)在(1)的条件下,将绕点顺时针旋转,①面出旋转后的(其中、、三点旋转后的对应点分别是点、、);②若,则________.(用含的式子表示)23.(10分)如图,E是正方形ABCD的CD边上的一点,BF⊥AE于F,(1)求证:△ADE∽△BFA;(2)若正方形ABCD的边长为2,E为CD的中点,求△BFA的面积,24.(10分)某校综合实践小组要对一幢建筑物的高度进行测量.如图,该小组在一斜坡坡脚处测得该建筑物顶端的仰角为,沿斜坡向上走到达处,(即)测得该建筑物顶端的仰角为.已知斜坡的坡度,请你计算建筑物的高度(即的长,结果保留根号).25.(12分)如图,在梯形中,,,,,,点在边上,,点是射线上一个动点(不与点、重合),联结交射线于点,设,.(1)求的长;(2)当动点在线段上时,试求与之间的函数解析式,并写出函数的定义域;(3)当动点运动时,直线与直线的夹角等于,请直接写出这时线段的长.26.已知,关于的方程的两个实数根.(1)若时,求的值;(2)若等腰的一边长,另两边长为、,求的周长.

参考答案一、选择题(每题4分,共48分)1、A【分析】根据已知作出三角形的高线AD,进而得出AD,BD,CD,的长,即可得出三角形的面积.【详解】解:过点A作AD⊥BC,∵△ABC中,cosB=,sinC=,AC=5,

∴cosB==,

∴∠B=45°,

∵sinC===,

∴AD=3,

∴CD==4,

∴BD=3,

则△ABC的面积是:×AD×BC=×3×(3+4)=.

故选A.【点睛】此题主要考查了解直角三角形的知识,作出AD⊥BC,进而得出相关线段的长度是解决问题的关键.2、A【分析】设△OAB的边长为2a,根据等边三角形的性质,可得点B的坐标为(-a,a),代入反比例函数解析式可得出a的值,继而得出△OAB的周长.【详解】解:如图,设△OAB的边长为2a,过B点作BM⊥x轴于点M.

又∵△OAB是等边三角形,

∴OM=OA=a,BM=a,

∴点B的坐标为(-a,a),

∵点B是反比例函数y=−图象上的点,

∴-a•a=-8,

解得a=±2(负值舍去),

∴△OAB的周长为:3×2a=6a=12.

故选:A.【点睛】此题考查反比例函数图象上点的坐标特征,等边三角形的性质,设△OAB的边长为2a,用含a的代数式表示出点B的坐标是解题的关键.3、D【解析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】所有正方形都相似,故D符合题意;故选D.【点睛】此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.4、C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.此图案既不是轴对称图形,也不是中心对称图形;

B.此图案既不是轴对称图形,也不是中心对称图形;

C.此图案既是轴对称图形,又是中心对称图形;

D.此图案仅是轴对称图形;

故选:C.【点睛】本题考查了中心对称图形与轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.5、A【解析】提公因式,用因式分解法解方程即可.【详解】一元二次方程,提公因式得:,∴或,解得:.故选:A.【点睛】本题考查了解一元二次方程-因式分解法,熟练掌握因式分解法是解题的关键.6、D【分析】根据有理数乘方运算的法则计算即可.【详解】解:,故选:D.【点睛】本题考查了有理数的乘方,掌握运算法则是解题的关键.7、B【分析】根据旋转的性质可得:△PBC≌△P′BA,故∠PBC=∠P′BA,即可求解.【详解】由已知得△PBC≌△P′BA,所以∠PBC=∠P′BA,所以∠PBP′=∠P′BA+∠PBA,=∠PBC+∠PBA,=∠ABC,=60°.故选:B.【点睛】本题考查旋转的性质.旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.8、C【解析】连接AC,利用勾股定理求出AC的长度,即可解题.【详解】解:如下图,连接AC,∵圆A的半径是4,AB=4,AD=3,∴由勾股定理可知对角线AC=5,∴D在圆A内,B在圆上,C在圆外,故选C.【点睛】本题考查了圆的简单性质,属于简单题,利用勾股定理求出AC的长是解题关键.9、B【解析】试题分析:连接CO,过点A作AD⊥x轴于点D,过点C作CE⊥x轴于点E,∵连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=220°,∴CO⊥AB,∠CAB=30°,则∠AOD+∠COE=90°,∵∠DAO+∠AOD=90°,∴∠DAO=∠COE,又∵∠ADO=∠CEO=90°,∴△AOD∽△OCE,∴=tan60°=,则=3,∵点A是双曲线在第二象限分支上的一个动点,∴=AD•DO=×6=3,∴k=EC×EO=2,则EC×EO=2.故选B.考点:2.反比例函数图象上点的坐标特征;2.综合题.10、B【分析】根据连续奇数的关系用x表示出另一个奇数,然后根据乘积列方程即可.【详解】解:根据题意:另一个奇数为:x+2∴故选B.【点睛】此题考查的是一元二次方程的应用,掌握数字之间的关系是解决此题的关键.11、B【分析】先将一元二次方程变为一般式,然后根据根与系数的关系即可得出结论.【详解】解:将变形为根据根与系数的关系:故选B.【点睛】此题考查的是一元二次方程根与系数的关系,掌握两根之积等于是解决此题的关键.12、A【解析】试题分析:因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是.故选A.考点:概率公式.二、填空题(每题4分,共24分)13、【分析】移项,配方,即可得出选项.【详解】x2﹣x﹣=0x2﹣x=x2﹣x+=+故填:.【点睛】本题考查了解一元二次方程的应用,能正确配方是解此题的关键.14、2:1【解析】先根据相似三角形面积的比是4:9,求出其相似比是2:1,再根据其对应的角平分线的比等于相似比,可知它们对应的角平分线比是2:1.故答案为2:1.点睛:本题考查的是相似三角形的性质,即相似三角形对应边的比、对应高线的比、对应角平分线的比、周长的比都等于相似比;面积的比等于相似比的平方.15、;【分析】根据题意和三角形相似,可以用含的代数式表示出,然后根据矩形面积公式,即可得到与的函数关系式.【详解】解:四边形是矩形,,上的高,,矩形的面积为,,,,得,,故答案为:.【点睛】本题考查根据实际问题列二次函数关系式、相似三角形的判定与性质,解答本题的关键是明确题意,利用数形结合的思想解答.16、【分析】设a=3k,则b=4k,代入计算即可.【详解】设a=3k,则b=4k,∴.故答案为:.【点睛】本题考查了比例的性质.熟练掌握k值法是解答本题的关键.17、15【分析】根据旋转的性质知∠DFC=60°,再根据EF=CF,EC⊥CF知∠EFC=45°,故∠EFD=∠DFC-∠EFC=15°.【详解】∵△DCF是△BCE旋转以后得到的图形,∴∠BEC=∠DFC=60°,∠ECF=∠BCE=90°,CF=CE.又∵∠ECF=90°,∴∠EFC=∠FEC=(180°﹣∠ECF)=(180°﹣90°)=45°,故∠EFD=∠DFC﹣∠EFC=60°﹣45°=15°.【点睛】此题主要考查正方形的性质,解题的关键是熟知等腰直角三角形与正方形的性质.18、、、【分析】根据直线平分三角形周长得出线段的和差关系,再通过四种情形下的相似三角形的性质计算线段的长.【详解】解:设过点D的直线与△ABC的另一个交点为E,∵AC=4,BC=3,∴AB==5设AD=x,BD=5-x,∵DE平分△ABC周长,∴周长的一半为(3+4+5)÷2=6,分四种情况讨论:①△BED∽△BCA,如图1,BE=1+x∴,即:,解得x=,②△BDE∽△BCA,如图2,BE=1+x∴,即:,解得:x=,BE=>BC,不符合题意.③△ADE∽△ABC,如图3,AE=6-x∴,即,解得:x=,④△BDE∽△BCA,如图4,AE=6-x∴,即:,解得:x=,综上:AD的长为、、.【点睛】本题考查的相似三角形的判定和性质,根据不同的相似模型分情况讨论,根据不同的线段比例关系求解.三、解答题(共78分)19、33.1米【分析】根据题意及解直角三角形的应用直接列式求解即可.【详解】解:过点D作DF⊥AB,如图所示:在Rt△ADF中,DF=BC=21米,∠ADF=45°∴AF=DF=21米在Rt△EDF中,DF=21米,∠EDF=30°∴EF=DF×tan30°=米∴AE=AF+BF=+21≈33.1米.答:条幅的长AE约是33.1米.【点睛】本题主要考查解直角三角形的应用,关键是根据题意及利用三角函数求出线段的长.20、(1)①2,②证明见解析;(2)①见解析,②▱ABCD是10阶准菱形.【解析】(1)①根据邻边长分别为2和3的平行四边形经过两次操作,即可得出所剩四边形是菱形,即可得出答案;

②根据平行四边形的性质得出AE∥BF,进而得出AE=BF,即可得出答案;

(2)①利用3阶准菱形的定义,即可得出答案;

②根据a=6b+r,b=5r,用r表示出各边长,进而利用图形得出▱ABCD是几阶准菱形.【详解】解:(1)①利用邻边长分别为2和3的平行四边形经过两次操作,所剩四边形是边长为1的菱形,

故邻边长分别为2和3的平行四边形是2阶准菱形;

故答案为:2;

②由折叠知:∠ABE=∠FBE,AB=BF,

∵四边形ABCD是平行四边形,

∴AE∥BF,

∴∠AEB=∠FBE,

∴∠AEB=∠ABE,

∴AE=AB,

∴AE=BF,

∴四边形ABFE是平行四边形,

∴四边形ABFE是菱形;

(2)①如图所示:

②答:10阶菱形,

∵a=6b+r,b=5r,

∴a=6×5r+r=31r;

如图所示:

故▱ABCD是10阶准菱形.【点睛】此题主要考查了图形的剪拼以及菱形的判定,根据已知n阶准菱形定义正确将平行四边形分割是解题关键.21、(1)画图见解析;(2)点A到达A1的路径长为π.【分析】(1)根据旋转的定义分别作出点A,B,C绕原点旋转所得对应点,再首尾顺次连接即可得;(2)点A到达A1的路径是以O为圆心,OA为半径的半圆,据此求解可得.【详解】解:(1)如图所示,△A1B1C1即为所求.(2)∵OA==,∴点A到达A1的路径长为×2π×=π.【点睛】本题考查利用旋转变换作图,勾股定理,弧长公式,熟练掌握网格结构,准确找出对应点的位置是解题的关键.22、(1)见解析;(2)①见解析,②90°−α【分析】(1)利用网格特点和轴对称的性质画出O点;(2)①利用网格特点和旋转的性质分别画出A、B、C三点对应点点E、F、G即可;②先确定∠OCB=∠DCB=α,再利用OB=OC和三角形内角和得到∠BOC=180°−2α,根据旋转的性质得到∠COG=90°,则∠BOG=270°−2α,于是可计算出∠OGB=α−45°,然后计算∠OGC−∠OGB即可.【详解】(1)如图,点O为所作;(2)①如图,△EFG为所作;②∵点O与点D关于BC对称,∴∠OCB=∠DCB=α,∵OB=OC,∴∠OBC=∠OCB=α,∴∠BOC=180°−2α,∵∠COG=90°,∴∠BOG=180°−2α+90°=270°−2α,∵OB=OG,∴∠OGB=[180°−(270°−2α)]=α−45°,∴∠BGC=∠OGC−∠OGB=45°−(α−45°)=90°−α.故答案为90°−α.【点睛】本题考查了作图−旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.23、(1)见详解;(2)【分析】(1)根据两角相等的两个三角形相似,即可证明△ADE∽△BFA;(2)利用三角形的面积比等于相似比的平方,即可解答.【详解】(1)证明:∵BF⊥AE于点F,四边形ABCD为正方形,∴△ADE和△BFA均为直角三角形,∵DC∥AB,∴∠DEA=∠FAB,∴△ADE∽△BFA;(2)解:∵AD=2,E为CD的中点,∴DE=1,∴AE=,∴,∵△ADE∽△BFA,∴,∵S△ADE=×1×2=1,∴S△BFA=S△ADE=.【点睛】本题主要考查三角形相似的性质与判定,熟记相似三角形的判定是解决第(1)小题的关键;第(2)小题中,利用相似三角形的面积比是相似比的平方是解决此题的关键.24、建筑物的高度为.【分析】过点作,根据坡度的定义求出AB,BD,AD,再利用三角函数的定义列出方程求解.【详解】解:过点作,垂足为.过点作,垂足为.∵,∴,∴四边形是矩形,∴,,.∵,∴,∴设,,∴,∴,∴,.根据题意,,,在中,设,∵,∴,∴,∴,在中,∵,.又∵,∴,解得,∴.答:建筑物的高度为.【点睛】此题主要考查解直角三角形,解题的关键是熟知三角函数的定义.25、(1);(1);(3)线段的长为或13【分析】(1)如图1中,作AH⊥BC于H,解直角三角形求出EH,CH即可解决问题.

(1)延长AD交BM的延长线于G.利用平行线分线段成比例定理构建关系式即可解决问题.

(3)分两种情形:①如图3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论