




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年广东省广州三中学数学九年级第一学期期末经典试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.已知点A(1,a)、点B(b,2)关于原点对称,则a+b的值为()A.3 B.-3 C.-1 D.12.二次函数y=x2+2的对称轴为()A. B. C. D.3.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为A.9 B.6 C.4 D.34.如图,圆内接四边形ABCD的边AB过圆心O,过点C的切线与边AD所在直线垂直于点M,若∠ABC=55°,则∠ACD等于()A.20° B.35° C.40° D.55°5.如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A.6 B.5 C.4 D.36.如图,现有两个相同的转盘,其中一个分为红、黄两个相等的区域,另一个分为红、黄、蓝三个相等的区域,随即转动两个转盘,转盘停止后指针指向相同颜色的概率为()A. B. C. D.7.抛物线y=2x2+3与两坐标轴的公共点个数为()A.0个 B.1个 C.2个 D.3个8.二次函数y=ax2+bx+c的图象如图所示,在ab、ac、b2﹣4ac,2a+b,a+b+c,这五个代数式中,其值一定是正数的有()A.1个 B.2个 C.3个 D.4个9.数据3、4、6、7、x的平均数是5,这组数据的中位数是()A.4 B.4.5 C.5 D.610.已知反比例函数的图象经过点,则的值是()A. B. C. D.二、填空题(每小题3分,共24分)11.在如图所示的几何体中,其三视图中有三角形的是______(填序号).12.定义符号max{a,b}的含义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b}=b,如:max{3,1}=3,max{﹣3,2}=2,则方程max{x,﹣x}=x2﹣6的解是_____.13.如图,将一个装有水的杯子倾斜放置在水平的桌面上,其截面可看作一个宽BC=6厘米,长CD=16厘米的矩形.当水面触到杯口边缘时,边CD恰有一半露出水面,那么此时水面高度是______厘米.14.抛掷一枚质地均匀的硬币一次,正面朝上的概率是_____.15.若实数a、b满足a+b2=2,则a2+5b2的最小值为_____.16.我们定义一种新函数:形如(,且)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2-2x-3|的图象(如图所示),并写出下列五个结论:①图象与坐标轴的交点为,和;②图象具有对称性,对称轴是直线;③当或时,函数值随值的增大而增大;④当或时,函数的最小值是0;⑤当时,函数的最大值是1.其中正确结论的个数是______.17.圆锥的母线长为5cm,高为4cm,则该圆锥的全面积为_______cm2.18.我市博览馆有A,B,C三个入口和D,E两个出口,小明入馆游览,他从A口进E口出的概率是____.三、解答题(共66分)19.(10分)如图所示,一辆单车放在水平的地面上,车把头下方处与坐垫下方处在平行于地面的同一水平线上,,之间的距离约为,现测得,与的夹角分别为与,若点到地面的距离为,坐垫中轴处与点的距离为,求点到地面的距离(结果保留一位小数).(参考数据:,,)20.(6分)参照学习函数的过程方法,探究函数的图像与性质,因为,即,所以我们对比函数来探究列表:…-4-3-2-11234……124-4-2-1……235-3-20…描点:在平面直角坐标系中以自变量的取值为横坐标,以相应的函数值为纵坐标,描出相应的点如图所示:(1)请把轴左边各点和右边各点分别用一条光滑曲线,顺次连接起来;(2)观察图象并分析表格,回答下列问题:①当时,随的增大而______;(“增大”或“减小”)②的图象是由的图象向______平移______个单位而得到的;③图象关于点______中心对称.(填点的坐标)(3)函数与直线交于点,,求的面积.21.(6分)解方程:(1)(x2)(x3)12(2)3y212y22.(8分)如图,点在以线段为直径的圆上,且,点在上,且于点,是线段的中点,连接、.(1)若,,求的长;(2)求证:.23.(8分)感知:如图①,在四边形ABCD中,AB∥CD,∠B=90°,点P在BC边上,当∠APD=90°时,可知△ABP∽△PCD.(不要求证明)探究:如图②,在四边形ABCD中,点P在BC边上,当∠B=∠C=∠APD时,求证:△ABP∽△PCD.拓展:如图③,在△ABC中,点P是边BC的中点,点D、E分别在边AB、AC上.若∠B=∠C=∠DPE=45°,BC=6,BD=4,则DE的长为.24.(8分)如图1,在矩形ABCD中,AB=6cm,BC=8cm,如果点E由点B出发沿BC方向向点C匀速运动,同时点F由点D出发沿DA方向向点A匀速运动,它们的速度分别为每秒2cm和1cm,FQ⊥BC,分别交AC、BC于点P和Q,设运动时间为t秒(0<t<4).(1)连接EF,若运动时间t=秒时,求证:△EQF是等腰直角三角形;(2)连接EP,当△EPC的面积为3cm2时,求t的值;(3)在运动过程中,当t取何值时,△EPQ与△ADC相似.25.(10分)如图,某校数学兴趣小组为测量该校旗杆及笃志楼的高度,先在操场的处用测角仪测得旗杆顶端的仰角为,此时笃志楼顶端恰好在视线上,再向前走到达处,用该测角仪又测得笃志楼顶端的仰视角为.已知测角仪高度为,点、、在同一水平线上.(1)求旗杆的高度;(2)求笃志楼的高度(精确到).(参考数据:,)26.(10分)如图,在以线段AB为直径的⊙O上取一点,连接AC、BC,将△ABC沿AB翻折后得到△ABD
(1)试说明点D在⊙O上;(2)在线段AD的延长线上取一点E,使AB2=AC·AE,求证:BE为⊙O的切线;(3)在(2)的条件下,分别延长线段AE、CB相交于点F,若BC=2,AC=4,求线段EF的长.
参考答案一、选择题(每小题3分,共30分)1、B【分析】由关于原点对称的两个点的坐标之间的关系直接得出a、b的值即可.【详解】∵点A(1,a)、点B(b,2)关于原点对称,∴a=﹣2,b=﹣1,∴a+b=﹣3.故选B.【点睛】关于原点对称的两个点,它们的横坐标互为相反数,纵坐标也互为相反数.2、B【分析】根据二次函数的性质解答即可.【详解】二次函数y=x2+2的对称轴为直线.故选B.【点睛】本题考查了二次函数y=a(x-h)2+k(a,b,c为常数,a≠0)的性质,熟练掌握二次函数y=a(x-h)2+k的性质是解答本题的关键.y=a(x-h)2+k是抛物线的顶点式,a决定抛物线的形状和开口方向,其顶点是(h,k),对称轴是x=h.3、D【分析】已知ab=8可求出四个三角形的面积,用大正方形面积减去四个三角形的面积得到小正方形的面积,根据面积利用算术平方根求小正方形的边长.【详解】故选D.【点睛】本题考查勾股定理的推导,有较多变形题,解题的关键是找出图形间面积关系,同时熟练运用勾股定理以及完全平方公式,本题属于基础题型.4、A【解析】试题解析:∵圆内接四边形ABCD的边AB过圆心O,∴∠ADC+∠ABC=180°,∠ACB=90°,∴∠ADC=180°﹣∠ABC=125°,∠BAC=90°﹣∠ABC=35°,∵过点C的切线与边AD所在直线垂直于点M,∴∠MCA=∠ABC=55°,∠AMC=90°,∵∠ADC=∠AMC+∠DCM,∴∠DCM=∠ADC﹣∠AMC=35°,∴∠ACD=∠MCA﹣∠DCM=55°﹣35°=20°.故选A.5、B【解析】过点O作OC⊥AB,垂足为C,则有AC=AB=×24=12,在Rt△AOC中,∠ACO=90°,AO=13,∴OC==5,即点O到AB的距离是5.6、A【解析】先画树状图展示所有6种等可能的结果数,找出停止后指针指向相同颜色的结果数,然后根据概率公式计算.【详解】画树状图如下:由树状图知,共有6种等可能结果,其中转盘停止后指针指向相同颜色的有2种结果,所以转盘停止后指针指向相同颜色的概率为=,故选:A.【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.7、B【分析】根据一元二次方程2x2+3=1的根的判别式的符号来判定抛物线y=2x2+3与x轴的交点个数,当x=1时,y=3,即抛物线y=2x2+3与y轴有一个交点.【详解】解:当y=1时,2x2+3=1.
∵△=12-4×2×3=-24<1,
∴一元二次方程2x2+3=1没有实数根,即抛物线y=2x2+3与x轴没有交点;
当x=1时,y=3,即抛物线y=2x2+3与y轴有一个交点,
∴抛物线y=2x2+3与两坐标轴的交点个数为1个.
故选B.【点睛】本题考查了抛物线与x轴、y轴的交点.注意,本题求得是“抛物线y=2x2+3与两坐标轴的交点个数”,而非“抛物线y=2x2+3与x轴交点的个数”.8、B【解析】试题分析:根据图象可知:,则;图象与x轴有两个不同的交点,则;函数的对称轴小于1,即,则;根据图象可知:当x=1时,,即;故本题选B.9、C【分析】首先根据3、4、6、7、x这组数据的平均数求得x值,再根据中位数的定义找到中位数即可.【详解】由3、4、6、7、x的平均数是1,即得这组数据按照从小到大排列为3、4、1、6、7,则中位数为1.故选C【点睛】此题考查了平均数计算及中位数的定义,熟练运算平均数及掌握中位数的定义是解题关键.10、A【分析】把代入反比例函数的解析式即可求解.【详解】把代入得:k=-4故选:A【点睛】本题考查的是求反比例函数的解析式,掌握反比例函数的图象和性质是关键.二、填空题(每小题3分,共24分)11、①【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,据此【详解】解:圆锥的主视图、左视图是等腰三角形,俯视图是带有圆心的圆,长方体主视图,左视图,俯视图都是矩形,
圆柱体的主视图是矩形,左视图是矩形,俯视图是圆,所以三视图中有三角形的是①.故答案为①【点睛】本题主要考查三视图的知识,熟练掌握常见几何体的三视图是解题的关键.12、1或﹣1【分析】分两种情况:x≥﹣x,即x≥0时;x<﹣x,即x<0时;进行讨论即可求解.【详解】当x≥﹣x,即x≥0时,∴x=x2﹣6,即x2﹣x﹣6=0,(x﹣1)(x+2)=0,解得:x1=1,x2=﹣2(舍去);当x<﹣x,即x<0时,∴﹣x=x2﹣6,即x2+x﹣6=0,(x+1)(x﹣2)=0,解得:x1=﹣1,x4=2(舍去).故方程max{x,﹣x}=x2﹣6的解是x=1或﹣1.故答案为:1或﹣1.【点睛】考查了解了一元二次方程-因式分解法,关键是熟练掌握定义符号max{a,b}的含义,注意分类思想的应用.13、【分析】先由勾股定理求出,再过点作于,由的比例线段求得结果即可.【详解】解:过点作于,如图所示:∵BC=6厘米,CD=16厘米,CD厘米,,由勾股定理得:,,,,,,即,.故答案为:.【点睛】此题主要考查了勾股定理的应用以及相似三角形的判定与性质,正确把握相关性质是解题关键.14、【分析】抛掷一枚质地均匀的硬币,其等可能的情况有2个,求出正面朝上的概率即可.【详解】抛掷一枚质地均匀的硬币,等可能的情况有:正面朝上,反面朝上,则P(正面朝上)=.故答案为.【点睛】本题考查了概率公式,概率=发生的情况数÷所有等可能情况数.15、1【分析】由a+b2=2得出b2=2-a,代入a2+5b2得出a2+5b2=a2+5(2-a)=a2-5a+10,再利用配方法化成a2+5b2=(a-,即可求出其最小值.【详解】∵a+b2=2,
∴b2=2-a,a≤2,
∴a2+5b2=a2+5(2-a)=a2-5a+10=(a-,
当a=2时,
a2+b2可取得最小值为1.
故答案是:1.【点睛】考查了二次函数的最值,解题关键是根据题意得出a2+5b2=(a-.16、1【解析】由,和坐标都满足函数,∴①是正确的;从图象可以看出图象具有对称性,对称轴可用对称轴公式求得是直线,②也是正确的;根据函数的图象和性质,发现当或时,函数值随值的增大而增大,因此③也是正确的;函数图象的最低点就是与轴的两个交点,根据,求出相应的的值为或,因此④也是正确的;从图象上看,当或,函数值要大于当时的,因此⑤时不正确的;逐个判断之后,可得出答案.【详解】解:①∵,和坐标都满足函数,∴①是正确的;②从图象可知图象具有对称性,对称轴可用对称轴公式求得是直线,因此②也是正确的;③根据函数的图象和性质,发现当或时,函数值随值的增大而增大,因此③也是正确的;④函数图象的最低点就是与轴的两个交点,根据,求出相应的的值为或,因此④也是正确的;⑤从图象上看,当或,函数值要大于当时的,因此⑤是不正确的;故答案是:1【点睛】理解“鹊桥”函数的意义,掌握“鹊桥”函数与与二次函数之间的关系;两个函数性质之间的联系和区别是解决问题的关键;二次函数与轴的交点、对称性、对称轴及最值的求法以及增减性应熟练掌握.17、14π【分析】利用圆锥的母线长和圆锥的高求得圆锥的底面半径,表面积=底面积+侧面积=π×底面半径1+底面周长×母线长÷1.【详解】解:∵圆锥母线长为5cm,圆锥的高为4cm,∴底面圆的半径为3,则底面周长=6π,∴侧面面积=×6π×5=15π;∴底面积为=9π,∴全面积为:15π+9π=14π.故答案为14π.【点睛】本题利用了圆的周长公式和扇形面积公式求解.18、.【解析】根据题意作出树状图,再根据概率公式即可求解.【详解】根据题意画树形图:共有6种等情况数,其中“A口进E口出”有一种情况,从“A口进E口出”的概率为;故答案为:.【点睛】此题主要考查概率的计算,解题的关键是依题意画出树状图.三、解答题(共66分)19、66.7cm【分析】过点C作CH⊥AB于点H,过点E作EF垂直于AB延长线于点F,设CH=x,则AH=CH=x,BH=CHcot68°=0.4x,由AB=49知x+0.4x=49,解之求得CH的长,再由EF=BEsin68°=3.72根据点E到地面的距离为CH+CD+EF可得答案.【详解】如图,过点C作CH⊥AB于点H,过点E作EF垂直于AB延长线于点F,设
CH=x,则
AH=CH=x,BH=CHcot68°=0.4x,由
AB=49
得
x+0.4x=49,解得:x=35,∵BE=4,∴EF=BEsin68°=3.72,则点E到地面的距离为
CH+CD+EF=35+28+3.72≈66.7(cm),答:点E到地面的距离约为
66.7cm.【点睛】本题考查解直角三角形的实际应用,构造直角三角形,利用已知角度的三角函数值是解题的关键.20、(1)如图所示,见解析;(2)①增大;②上,1;③;(3)1.【分析】(1)按要求把轴左边点和右边各点分别用一条光滑曲线顺次连接起来即可;(2)①观察图像可得出函数增减性;②由表格数据及图像可得出平移方式;③由图像可知对称中心;(3)将与联立求解,得到A、B两点坐标,将△AOB分为△AOC与△BOC计算面积即可.【详解】(1)如图所示:(2)①由图像可知:当时,随的增大而增大,故答案为增大;②由表格数据及图像可知,的图象是由的图象向上平移1个单位而得到的,故答案为上,1;③由图像可知图像关于点(0,1)中心对称.(3),解得:或∴A点坐标为(-1,3),B点坐标为(1,-1)设直线与y轴交于点C,当x=0时,y=1,所以C点坐标为(0,1),如图所示,S△AOB=S△AOC+S△BOC===所以△AOB的面积为1.【点睛】本题考查反比例函数的图像与性质,描点作函数图像,掌握反比例函数的图像与性质是关键.21、(1),;(2)【分析】(1)首先把方程整理成一元二次方程的一般式,然后利用因式分解法解方程即可;(2)首先把方程整理成一元二次方程的一般式,然后利用因式分解法解方程即可.【详解】(1)方程变形为:即,因式分解得:,则或,解得:,;(2)方程变形为:,因式分解得:,则,解得:.【点睛】本题主要考查了一元二次方程的解法,关键是掌握因式分解法解方程的步骤.22、(1)5;(2)见解析【分析】(1)利用圆周角定理和圆心角、弧、弦的关系得到∠ACB=90°,且AC=BC,则∠A=45°,再证明△ADE为等腰直角三角形,所以AE=DE=6,接着利用勾股定理计算出BC,然后根据直角三角形斜边上的中线性质得到EF的长;(2)如图,连接CF,利用圆周角定理得到∠BED=∠AED=∠ACB=90°,再根据直角三角形斜边上的中线性质得CF=EF=FB=FD,利用圆的定义可判断B、C、D、E在以BD为直径的圆上,根据圆周角定理得到∠EFC=2∠EBC=90°,然后利用△EFC为等腰直角三角形得到.【详解】解:(1)∵点在以线段为直径的圆上,且∴,且∵,,,∴,在中,∵,,∴,又∵是线段的中点,∴;(2)如图,连接,线段与之间的数量关系是;∵,∵点是的中点,∴,∵,,∴,同理,∴,即,∴;【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了等腰直角三角形的判定与性质.23、探究:见解析;拓展:.【分析】感知:先判断出∠BAP=∠DPC,进而得出结论;探究:根据两角相等,两三角形相似,进而得出结论;拓展:利用△BDP∽△CPE得出比例式求出CE,结合三角形内角和定理证得AC⊥AB且AC=AB;最后在直角△ADE中利用勾股定理来求DE的长度.【详解】解:感知:∵∠APD=90°,∴∠APB+∠DPC=90°,∵∠B=90°,∴∠APB+∠BAP=90°,∴∠BAP=∠DPC,∵AB∥CD,∠B=90°,∴∠C=∠B=90°,∴△ABP∽△PCD;探究:∵∠APC=∠BAP+∠B,∠APC=∠APD+∠CPD,∴∠BAP+∠B=∠APD+∠CPD.∵∠B=∠APD,∴∠BAP=∠CPD.∵∠B=∠C,∴△ABP∽△PCD;拓展:同探究的方法得出,△BDP∽△CPE,∴,∵点P是边BC的中点,∴BP=CP=3,∵BD=4,∴,∴CE=,∵∠B=∠C=45°,∴∠A=180°﹣∠B﹣∠C=90°,即AC⊥AB且AC=AB=6,∴AE=AC﹣CE=6﹣=,AD=AB﹣BD=6﹣4=2,在Rt△ADE中,DE===.故答案是:.【点睛】此题是相似综合题.主要考查了相似三角形的判定与性质、勾股定理、三角形内角和定理以及三角形外角的性质.解本题的关键是判断出△ABP∽△PCD.24、(1)详见解析;(2)2秒;(3)2秒或秒或秒.【分析】(1)由题意通过计算发现EQ=FQ=6,由此即可证明;(2)根据题意利用三角形的面积建立方程即可得出结论;(3)由题意分点E在Q的左侧以及点E在Q的右侧这两种情况,分别进行分析即可得出结论.【详解】解:(1)证明:若运动时间t=秒,则BE=2×=(cm),DF=(cm),∵四边形ABCD是矩形∴AD=BC=8(cm),AB=DC=6(cm),∠D=∠BCD=90°∵∠D=∠FQC=∠QCD=90°,∴四边形CDFQ也是矩形,∴CQ=DF,CD=QF=6(cm),∴EQ=BC﹣BE﹣CQ=8﹣﹣=6(cm),∴EQ=QF=6(cm),又∵FQ⊥BC,∴△EQF是等腰直角三角形;(2)由(1)知,CE=8﹣2t,CQ=t,在Rt△ABC中,tan∠ACB==,在Rt△CPQ中,tan∠ACB===,∴PQ=t,∵△EPC的面积为3cm2,∴S△EPC=CE×PQ=×(8﹣2t)×t=3,∴t=2秒,即t的值为2秒;(3)解:分两种情况:Ⅰ.如图1中,点E在Q的左侧.①∠PEQ=∠CAD时,△EQP∽△ADC,∵四边形ABCD是矩形,∴AD∥BC,∴∠CAD=∠ACB,∵△EQP∽△ADC,∴∠CAD=∠QEP,∴∠ACB=∠QEP,∴EQ=CQ,∴CE=2CQ,由(1)知,CQ=t,CE=8-2t,∴8-2t=2t,∴t=2秒;②∠PEQ=∠ACD时,△EPQ∽△CAD,∴,∵FQ⊥BC,∴FQ∥AB,∴△CPQ∽△CAB,∴,即,解得:,∴,解得:;Ⅱ.如图2中,点E在Q的右侧.∵0<t<4,∴点E不能与点C重合,∴只存在△EPQ∽△CAD,可得,即,解得:;综上所述,t的值为2秒或秒或秒时,△EPQ与△ADC相似.【点睛】本题是相似形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第五单元 第16课 一、网上学习 教学设计 2023-2024学年人教版初中信息技术七年级上册
- Unit 4 Section A (3a-3c) 教学设计 2024-2025学年人教新目标八年级英语下册
- 第2课 抗美援朝(教学设计)2023-2024学年八年级历史下册同步教学(河北专版)
- 8 灯光(教学设计)2024-2025学年统编版语文六年级上册
- 第二单元 课题3家庭制氧机-制取氧气教学设计-2024-2025学年九年级化学人教版(2024)上册
- 2025年PCB高纯化学品项目合作计划书
- 第一单元 第二课 传感之古今未来 教学设计2024-2025学年人教版(2024)初中信息科技八年级上册
- 全国山西经济版小学信息技术第一册第二单元活动4《申请邮箱》教学设计
- 全国人教版初中信息技术八年级下册第二单元第6课《作任意菱形》教学设计
- 医用推床行业市场发展及发展趋势与投资战略研究报告
- 常见织带花链的排法和穿棕方法
- 《化工工程制图》完整教案
- 2023年广东省中考试卷(语数英物化史生等共11套)带答案解析
- DFX工艺设计方法介绍
- 洪恩识字识字卡(001-100)可直接打印剪裁
- 违反八项规定问题典型案例、法规依据和关注点
- J-STD-033D处理包装运输和使用湿度回流和过程敏感设备
- 文联述职报告
- SCI期刊的名称缩写与全称对照表
- 人机料法环测检查表
- 一年级上册综合实践活动导学案 各种各样的汽车 全国通用
评论
0/150
提交评论