![2023-2024学年天津市滨海新区名校九年级数学第一学期期末达标检测模拟试题含解析_第1页](http://file4.renrendoc.com/view10/M03/3E/36/wKhkGWWU35uATRzSAAGt1Dp2TF0698.jpg)
![2023-2024学年天津市滨海新区名校九年级数学第一学期期末达标检测模拟试题含解析_第2页](http://file4.renrendoc.com/view10/M03/3E/36/wKhkGWWU35uATRzSAAGt1Dp2TF06982.jpg)
![2023-2024学年天津市滨海新区名校九年级数学第一学期期末达标检测模拟试题含解析_第3页](http://file4.renrendoc.com/view10/M03/3E/36/wKhkGWWU35uATRzSAAGt1Dp2TF06983.jpg)
![2023-2024学年天津市滨海新区名校九年级数学第一学期期末达标检测模拟试题含解析_第4页](http://file4.renrendoc.com/view10/M03/3E/36/wKhkGWWU35uATRzSAAGt1Dp2TF06984.jpg)
![2023-2024学年天津市滨海新区名校九年级数学第一学期期末达标检测模拟试题含解析_第5页](http://file4.renrendoc.com/view10/M03/3E/36/wKhkGWWU35uATRzSAAGt1Dp2TF06985.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年天津市滨海新区名校九年级数学第一学期期末达标检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.一元二次方程的左边配成完全平方后所得方程为()A. B. C. D.2.已知,,是反比例函数的图象上的三点,且,则、、的大小关系是()A. B. C. D.3.下列标志中是中心对称图形的是()A. B. C. D.4.如图,在平面直角坐标系中,点的坐标为,那么的值是()A. B. C. D.5.如图,点A,B,C是⊙O上的三点,若∠BOC=50°,则∠A的度数是()A.25° B.20° C.80° D.100°6.已知点A(,m),B(l,m),C(2,1)在同一条抛物线上,则下列各点中一定在这条抛物线上的是(
)A. B. C. D.7.若,则的值为()A. B. C. D.8.已知点都在反比例函数的图象上,则下列关系式一定正确的是()A. B.C. D.9.表给出了二次函数y=ax2+bx+c(a≠0)的自变量x与函数值y的部分对应值:那么方程ax2+bx+c=0的一个根的近似值可能是()x…11.11.21.31.4…y…﹣1﹣0.490.040.591.16…A.1.08 B.1.18 C.1.28 D.1.3810.下列对抛物线y=-2(x-1)2+3性质的描写中,正确的是(
)A.开口向上 B.对称轴是直线x=1 C.顶点坐标是(-1,3) D.函数y有最小值二、填空题(每小题3分,共24分)11.已知正方形的边长为1,为射线上的动点(不与点重合),点关于直线的对称点为,连接,,,.当是等腰三角形时,的值为__________.12.如图,中,,,,将绕顶点逆时针旋转到处,此时线段与的交点恰好为的中点,则的面积为______.13.若一个圆锥的侧面积是,侧面展开图是半圆,则该圆锥的底面圆半径是______.14.已知菱形中,,,边上有点点两动点,始终保持,连接取中点并连接则的最小值是_______.15.已知MAX(a,b)=a,其中a>b如果MAX(,0)=0,那么x的取值范围为__________16.如图,△ABC中,已知∠C=90°,∠B=55°,点D在边BC上,BD=2CD.把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=_____17.如图所示,半圆O的直径AB=4,以点B为圆心,为半径作弧,交半圆O于点C,交直径AB于点D,则图中阴影部分的面积是_____________.18.如图,△ABC和△A′B′C是两个完全重合的直角三角板,∠B=30°,斜边长为10cm.三角板A′B′C绕直角顶点C顺时针旋转,当点A′落在AB边上时,CA′旋转所构成的扇形的弧长为_______cm.三、解答题(共66分)19.(10分)关于x的方程x2-4x+2m+2=0有实数根,且m为正整数,求m的值及此时方程的根.20.(6分)如图,路灯(P点)距地面9米,身高1.5米的小云从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?21.(6分)元旦期间,小黄自驾游去了离家156千米的黄石矿博园,右图是小黄离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求小黄出发0.5小时时,离家的距离;(2)求出AB段的图象的函数解析式;(3)小黄出发1.5小时时,离目的地还有多少千米?22.(8分)利川市南门大桥是上世纪90年代修建的一座石拱桥,其主桥孔的横截面是一条抛物线的一部分,2019年在维修时,施工队测得主桥孔最高点到水平线的高度为.宽度为.如图所示,现以点为原点,所在直线为轴建立平面直角坐标系.(1)直接写出点及抛物线顶点的坐标;(2)求出这条抛物线的函数解析式;(3)施工队计划在主桥孔内搭建矩形“脚手架”,使点在抛物线上,点在水平线上,为了筹备材料,需求出“脚手架”三根钢管的长度之和的最大值是多少?请你帮施工队计算.23.(8分)先化简,再求值:,其中x满足x2﹣4x+3=1.24.(8分)小王同学在地质广场上放风筝,如图风筝从处起飞,几分钟后便飞达处,此时,在延长线上处的小张同学发现自己的位置与风筝和广场边旗杆的顶点在同一直线上,已知旗杆高为10米,若在处测得旗杆顶点的仰角为30〫,处测得点的仰角为45〫,若在处背向旗杆又测得风筝的仰角为75〫,绳子在空中视为一条线段,求绳子为多少米?(结果保留根号)25.(10分)在平面直角坐标系中,已知抛物线y1=x2﹣4x+4的顶点为A,直线y2=kx﹣2k(k≠0),(1)试说明直线是否经过抛物线顶点A;(2)若直线y2交抛物线于点B,且△OAB面积为1时,求B点坐标;(1)过x轴上的一点M(t,0)(0≤t≤2),作x轴的垂线,分别交y1,y2的图象于点P,Q,判断下列说法是否正确,并说明理由:①当k>0时,存在实数t(0≤t≤2)使得PQ=1.②当﹣2<k<﹣0.5时,不存在满足条件的t(0≤t≤2)使得PQ=1.26.(10分)如图,的顶点坐标分别为,,.(1)画出关于点的中心对称图形;(2)画出绕点逆时针旋转的;直接写出点的坐标为_____;(3)求在旋转到的过程中,点所经过的路径长.
参考答案一、选择题(每小题3分,共30分)1、B【解析】把常数项﹣5移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.【详解】把方程x2﹣2x﹣5=0的常数项移到等号的右边,得到x2﹣2x=5,方程两边同时加上一次项系数一半的平方,得到:x2﹣2x+(﹣1)2=5+(﹣1)2,配方得:(x﹣1)2=1.故选B.【点睛】本题考查了配方法解一元二次方程.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.2、C【分析】先根据反比例函数y=的系数2>0判断出函数图象在一、三象限,在每个象限内,y随x的增大而减小,再根据x1<x2<0<x3,判断出y1、y2、y3的大小.【详解】解:函数大致图象如图,∵k>0,则图象在第一、三象限,在每个象限内,y随x的增大而减小,又∵x1<x2<0<x3,∴y2<y1<y3.故选C.【点睛】本题考查了反比例函数图象上点的坐标特征.3、B【分析】根据中心对称图形的定义即可解答.【详解】解:A、是轴对称图形,不是中心对称的图形,不合题意;
B、是中心对称图形,符合题意;
C、既不是轴对称图形,也不是中心对称的图形,不合题意;
D、是轴对称图形,不是中心对称的图形,不合题意.
故选:B.【点睛】本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合.4、D【分析】过A作AB⊥x轴于点B,在Rt△AOB中,利用勾股定理求出OA,再根据正弦的定义即可求解.【详解】如图,过A作AB⊥x轴于点B,∵A的坐标为(4,3)∴OB=4,AB=3,在Rt△AOB中,∴故选:D.【点睛】本题考查求正弦值,利用坐标求出直角三角形的边长是解题的关键.5、A【解析】∵∠BOC=50°,∴∠A=∠BOC=25°.故选:A.【点睛】本题考查圆周角定理:在同圆或等圆中,一条弧所对的圆周角等于它所对圆心角的一半.6、B【分析】根据抛物线的对称性进行分析作答.【详解】由点A(,m),B(l,m),可得:抛物线的对称轴为y轴,∵C(2,1),∴点C关于y轴的对称点为(-2,1),故选:B.【点睛】本题考查二次函数的图象和性质,找到抛物线的对称轴是本题的关键.7、B【分析】根据算术平方根、绝对值的非负性分别解得的值,再计算即可.【详解】故选:B.【点睛】本题考查二次根式、绝对值的非负性、幂的运算等知识,是重要考点,难度较易,掌握相关知识是解题关键.8、C【分析】根据反比例函数的性质即可得到答案.【详解】∵k=3>0,反比例函数的图形在第一象限或第三象限,∴在每个象限内,y随着x的增大而减小,∵点,且3<6,∴,故选:C.【点睛】此题考查反比例函数的性质,正确掌握函数图象的增减性是解题的关键.9、B【分析】观察表中数据得到抛物线y=ax2+bx+c与x轴的一个交点在(1.1,0)和点(1.2,0)之间,更靠近点(1.2,0),然后根据抛物线与x轴的交点问题可得到方程ax2+bx+c=0一个根的近似值.【详解】∵x=1.1时,y=ax2+bx+c=﹣0.49;x=1.2时,y=ax2+bx+c=0.04;∴抛物线y=ax2+bx+c与x轴的一个交点在(1.1,0)和点(1.2,0)之间,更靠近点(1.2,0),∴方程ax2+bx+c=0有一个根约为1.1.故选:B.【点睛】本题主要考查抛物线与x轴的交点问题,掌握二次函数的图象与x轴的交点的横坐标与一元二次方程的根的关系,是解题的关键.10、B【分析】由抛物线的解析式可求得开口方向、对称轴及顶点坐标,再逐一进行判断即可.【详解】解:A、∵−2<0,∴抛物线的开口向下,故A错误,不符合题意;B、抛物线的对称轴为:x=1,故B正确,符合题意;C、抛物线的顶点为(1,3),故C错误,不符合题意;D、因为开口向下,故该函数有最大值,故D错误,不符合题意.故答案为:B.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x−h)2+k中,顶点坐标为(h,k),对称轴为x=h.二、填空题(每小题3分,共24分)11、或或【分析】以B为圆心,以AB长为半径画弧,以C为圆心,以CD长为半径画弧,两弧分别交于,此时都是以CD为腰的等腰三角形;作CD的垂直平分线交弧AC于点,此时以CD为底的等腰三角形.然后分别对这三种情况进行讨论即可.【详解】如图,以B为圆心,以AB长为半径画弧,以C为圆心,以CD长为半径画弧,两弧分别交于,此时都是以CD为腰的等腰三角形;作CD的垂直平分线交弧AC于点,此时以CD为底的等腰三角形(1)讨论,如图作辅助线,连接,作交AD于点P,过点,作于Q,交BC于F,为等边三角形,正方形ABCD边长为1在四边形中∴为含30°的直角三角形(2)讨论,如图作辅助线,连接,作交AD于点P,连接BP,过点,作于Q,交AB于F,∵EF垂直平分CD∴EF垂直平分AB为等边三角形在四边形中(3)讨论,如图作辅助线,连接,过作交AD的延长线于点P,连接BP,过点,作于Q,此时在EF上,不妨记与F重合为等边三角形,在四边形中故答案为:或或.【点睛】本题主要考查等腰三角形的定义和解直角三角形,注意分情况讨论是解题的关键.12、【分析】A1B1与OA相交于点E,作B1H⊥OB于点H,如图,利用勾股定理得到AB=1,再根据直角三角形斜边上的中线性质得OD=AD=DB,则∠1=∠A,接着根据旋转的性质得∠3=∠2,A1B1=AB=1,OB1=OB=8,OA1=OA=2,易得∠2+∠1=90°,所以∠OEB1=90°,于是可利用面积法计算出OE,再由四边形OEB1H为矩形得到B1H=OE,根据三角形的面积公式即可得出结论.【详解】A1B1与OA相交于点E,作B1H⊥OB于点H,如图,∵∠AOB=90°,AO=2,BO=8,∴AB1.∵D为AB的中点,∴OD=AD=DB,∴∠1=∠A.∵△AOB绕顶点O逆时针旋转得到△A1OB1,∴∠3=∠2,A1B1=AB=1,OB1=OB=8,OA1=OA=2.∵∠3+∠A=90°,∴∠2+∠1=90°,∴∠OEB1=90°.∵OE•A1B1OB1•OA1,∴OE.∵∠B1EO=∠EOB=∠OHB1=90°,∴四边形OEB1H为矩形,∴B1H=OE,∴的面积===.故答案为:.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了全等三角形的判定与性质和矩形的判定与性质.13、1.【解析】试题解析:设圆锥的母线长为R,解得:R=6,∴圆锥侧面展开图的弧长为:6π,∴圆锥的底面圆半径是6π÷2π=1.故答案为1.14、1【分析】过D点作DH⊥BC交BC延长线与H点,延长EF交DH与点M,连接BM.由菱形性质和可证明,进而可得,由BM最小值为BH即可求解.【详解】解:过D点作DH⊥BC交BC延长线与H点,延长EF交DH与点M,连接BM.∵在菱形中,,,∴,,∴,∵,,∴,∴,又∵,∴,∴,又∵,∴,∴当BM最小时FG最小,根据点到直线的距离垂线段最短可知,BM的最小值等于BH,∵在菱形中,,∴又∵在Rt△CHD中,,∴,∴,∴AM的最小值为6,∴的最小值是1.故答案为:1.【点睛】本题考查了动点线段的最小值问题,涉及了菱形的性质、等腰三角形性质和判定、垂线段最短、中位线定理等知识点;将“两动点”线段长通过中位线转化为“一定一动”线段长求解是解题关键.15、0﹤x﹤1【分析】由题意根据定义得出x2-x<0,通过作出函数y=x2-x的图象,根据图象即可求得x的取值范围.【详解】解:由题意可知x2-x<0,画出函数y=x2-x的图象如图:由图象可知x2-x<0的取值范围为0<x<1.故答案为:0<x<1.【点睛】本题主要考查二次函数的性质,解题的关键是理解新定义并根据新定义列出关于x的不等式运用数形结合思维分析.16、70°或120°【分析】①当点B落在AB边上时,根据DB=DB1,即可解决问题,②当点B落在AC上时,在RT△DCB2中,根据∠C=90°,DB2=DB=2CD可以判定∠CB2D=30°,由此即可解决问题.【详解】①当点B落在AB边上时,∵,∴,∴,②当点B落在AC上时,在中,∵∠C=90°,,∴,∴,故答案为70°或120°.【点睛】本题考查的知识点是旋转的性质,解题关键是考虑多种情况,进行分类讨论.17、【解析】解:连接OC,CB,过O作OE⊥BC于E,∴BE=BC==.∵OB=AB=2,∴OE=1,∴∠B=30°,∴∠COA=60°,===.故答案为.18、【分析】根据Rt△ABC中的30°角所对的直角边是斜边的一半、直角三角形斜边上的中线等于斜边的一半以及旋转的性质推知△AA′C是等边三角形,所以根据等边三角形的性质利用弧长公式来求CA′旋转所构成的扇形的弧长.【详解】解:∵在Rt△ABC中,∠B=30°,AB=10cm,∴AC=AB=5cm.根据旋转的性质知,A′C=AC,∴A′C=AB=5cm.∴点A′是斜边AB的中点,∴AA′=AB=5cm.∴AA′=A′C=AC,∴∠A′CA=60°.∴CA′旋转所构成的扇形的弧长为:(cm).故答案为:.三、解答题(共66分)19、m=1,【分析】直接利用根的判别式得出m的取值范围,再由m为正整数进而求出m的值,然后再将m代入方程中解方程得出答案.【详解】解:∵关于x的方程x2-4x+2m+2=0有实数根∴解得又为正整数∴将代回方程中,得到x2-4x+4=0即求得方程的实数根为:.故答案为:,方程的实数根为:【点睛】此题主要考查了根的判别式,当时方程有两个不相等的实数根;当时方程有两个相等的实数根;时方程无实数根.20、变短了2.8米.【解析】试题分析:试题解析:根据AC∥BD∥OP,得出△MAC∽△MOP,△NBD∽△NOP,再利用相似三角形的性质进行求解,即可得出答案.试题解析:如图:∵∠MAC=∠MOP=90°,∠AMC=∠OMP,∴△MAC∽△MOP,∴,即,解得,MA=4米;同理,由△NBD∽△NOP,可求得NB=1.2米,则马晓明的身影变短了4−1.2=2.8米.∴变短了,短了2.8米.21、(1)2千米;(2)y=90x﹣24(0.8≤x≤2);(3)3千米【分析】(1)先运用待定系数法求出OA的解析式,再将x=0.5代入,求出y的值即可;(2)设AB段图象的函数表达式为y=k′x+b,将A、B两点的坐标代入,运用待定系数法即可求解;(3)先将x=1.5代入AB段图象的函数表达式,求出对应的y值,再用156减去y即可求解.【详解】解:(1)设OA段图象的函数表达式为y=kx.∵当x=0.8时,y=48,∴0.8k=48,∴k=1.∴y=1x(0≤x≤0.8),∴当x=0.5时,y=1×0.5=2.故小黄出发0.5小时时,离家2千米;(2)设AB段图象的函数表达式为y=k′x+b.∵A(0.8,48),B(2,156)在AB上,,解得,∴y=90x﹣24(0.8≤x≤2);(3)∵当x=1.5时,y=90×1.5﹣24=111,∴156﹣111=3.故小黄出发1.5小时时,离目的地还有3千米.【点睛】本题考查了一次函数的应用及一次函数解析式的确定,解题的关键是通过仔细观察图象,从中整理出解题时所需的相关信息,本题较简单.22、(1);(2),;(3)三根钢管的长度之和的最大值是.【分析】(1)根据题意,即可写出点及抛物线顶点的坐标;(2)抛物线过原点,故设抛物线为,将M和P的坐标代入即可求出抛物线的解析式;(3)设,分别用含x的式子表示出的长度,设“脚手架”三根钢管的长度之和为,即可求出与x的函数关系式,最后利用二次函数求最值即可.【详解】解:(1)由题意可知:抛物线顶点;(2)抛物线过原点,故设抛物线为,由在抛物线上有,解得,所以抛物线的函数解析式为,由图象可知;(3)设,根据点A在抛物线上和矩形的性质可得,∵点A和点D关于抛物线的对称轴对称∴点D的坐标为(60-x,y)∴设“脚手架”三根钢管的长度之和为,则,即当时,,所以,三根钢管的长度之和的最大值是.【点睛】此题考查的是二次函数的应用,掌握用待定系数法求二次函数的解析式和利用二次函数求最值是解决此题的关键.23、化简结果是,求值结果是:.【分析】先根据分式混合运算的法则把原式进行化简,再求出x的值代入进行计算即可.【详解】解:原式====,∵x满足x2﹣4x+3=1,∴(x-3)(x-1)=1,∴x1=3,x2=1,当x=3时,原式=﹣=;当x=1时,分母等于1,原式无意义.∴分式的值为.故答案为:化简结果是,求值结果是:.【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及解一元二次方程的能力.24、.【分析】利用三角函数求出,,求出AB的值,过点作于点M,可得,,利用三角函数可得:,,即可得出AC的值.【详解】在中,,,∴,又∵在中,,∴,∴(米),过点作于点M,如图所示,∵,,∴,,∴在中,,∴,,∵,,∴,在中,,∴米.【点睛】本题考查了仰角、俯角的问题及解直角三角形的应用,解答本题的关键是结合图形构造直角三角形,利用三角函数解直角三角形.25、(1)直线经过A点;(2)B(1,1)或B(1,1);(1)①正确,②正确.【解析】(1)将抛物线解析式整理成顶点式形式,然后写出顶点A的坐标,将点A的坐标代入直线的解析式判断即可;(2)OA=2,△OAB面积为1时,根据三角形的面积公式,求出点B的纵坐标,代入抛物线的解析式即可求出点B的横坐标,即可求解.
(1)①点M(t,0),则点P(t,t2﹣4t+4),点Q(t,kt﹣2k),若k>0:当0≤t
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 环保理念在商业建筑中的应用研究-以绿色办公室为例
- 三年级学生经验分享发言稿
- 2023年贵州省遵义市中考地理真题(解析版)
- 订婚宴女生发言稿简短
- 学生会纪检部工作总结
- 构建高效的企业网络安全防御体系
- 医院院长年终个人工作总结
- 社区科普工作计划
- 社交媒体在职场沟通中的作用
- 社交媒体运营的法律法规与风险控制
- 粉尘防爆安全管理台账-全套
- 2015奔驰c180l c200l c3电路图9129座椅电气系统
- 充电站监理规划
- 管道完整性管理方法及应用
- 麦茬花生高产栽培技术
- 玉米制种技术
- 中国旅游资源概述
- 高一下分科文科班第一次主题班会
- 初中数学代数式部分的文本解读
- 浙江省杭州市2022年中考语文模拟试卷24
- 高中学生的自我评价200字 高中学生的自我评价(三篇)
评论
0/150
提交评论