版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年四川省广元市剑阁县数学九年级第一学期期末达标检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.在下列四个汽车标志图案中,是中心对称图形的是()A. B. C. D.2.下列图象能表示y是x的函数的是()A. B.C. D.3.如图,在正方形中,点是对角线的交点,过点作射线分别交于点,且,交于点.给出下列结论:;C;四边形的面积为正方形面积的;.其中正确的是()A. B. C. D.4.如图,在平面直角坐标系中,函数与的图像相交于,两点,过点作轴的平行线,交函数的图像于点,连接,交轴于点,则的面积为()A. B. C.2 D.5.下列事件属于必然事件的是()A.篮球队员在罚球线上投篮一次,未投中 B.掷一次骰子,向上一面的点数是6C.任意画一个五边形,其内角和是540° D.经过有交通信号灯的路口,遇到红灯6.已知二次函数的图象经过点,当自变量的值为时,函数的值为()A. B. C. D.7.已知函数的图象如图所示,则一元二次方程根的存在情况是A.没有实数根 B.有两个相等的实数根C.有两个不相等的实数根 D.无法确定8.图1是一个地铁站入口的双翼闸机.如图2,它的双翼展开时,双翼边缘的端点A与B之间的距离为10cm,双翼的边缘AC=BD=54cm,且与闸机侧立面夹角∠PCA=∠BDQ=30°.当双翼收起时,可以通过闸机的物体的最大宽度为()A.(54+10)cm B.(54+10)cm C.64cm D.54cm9.如图,P、Q是⊙O的直径AB上的两点,P在OA上,Q在OB上,PC⊥AB交⊙O于C,QD⊥AB交⊙O于D,弦CD交AB于点E,若AB=20,PC=OQ=6,则OE的长为()A.1 B.1.5 C.2 D.2.510.寒假即将来临,小明要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,那么小明选择到甲社区参加实践活动的可能性为()A. B. C. D.二、填空题(每小题3分,共24分)11.化简:=______.12.已知,关于原点对称,则__________.13.将一副三角尺按如图所示的方式叠放在一起,边AC与BD相交于点E,则的值等于_________.14.如图,在大楼AB的楼顶B处测得另一栋楼CD底部C的俯角为60度,已知A、C两点间的距离为15米,那么大楼AB的高度为_____米.(结果保留根号)15.如图,分别以四边形ABCD的各顶点为圆心,以1长为半径画弧所截的阴影部分的面积的和是________.16.如图,利用我们现在已经学过的圆和锐角三角函数的知识可知,半径r和圆心角θ及其所对的弦长l之间的关系为,从而,综合上述材料当时,______.17.如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是________.18.一个质地均匀的小正方体,六个面分别标有数字1,1,2,4,5,5,随机掷一次小正方体,朝上一面的数字是奇数的概率是__________.三、解答题(共66分)19.(10分)如图,在△ABC中,点E在边AB上,点G是△ABC的重心,联结AG并延长交BC于点D.(1)若,用向量、表示向量;(2)若∠B=∠ACE,AB=6,AC=2,BC=9,求EG的长.20.(6分)为响应市政府“创建国家森林城市”的号召,某小区计划购进A,B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元。设购进A种树苗x棵,购买两种树苗的总费用为w元。(1)写出w(元)关于x(棵)的函数关系式;(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用。21.(6分)根据龙湾风景区的旅游信息,某公司组织一批员工到该风景区旅游,支付给旅行社28000元.你能确定参加这次旅游的人数吗?22.(8分)某市政府高度重视教育工作,财政资金优先保障教育,2017年新校舍建设投入资金8亿元,2019年新校舍建设投入资金11.52亿元。求该市政府从2017年到2019年对校舍建设投入资金的年平均增长率.23.(8分)如图,二次函数y=(x﹣2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上点A(1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx+b≥(x﹣2)2+m的x的取值范围.24.(8分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交斜边AB于点M,若H是AC的中点,连接MH.(1)求证:MH为⊙O的切线.(2)若MH=,tan∠ABC=,求⊙O的半径.(3)在(2)的条件下分别过点A、B作⊙O的切线,两切线交于点D,AD与⊙O相切于N点,过N点作NQ⊥BC,垂足为E,且交⊙O于Q点,求线段NQ的长度.25.(10分)如图,已知,是的中点,过点作.求证:与相切.26.(10分)如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=1,(1)求线段OD的长度;(2)求弦AB的长度.
参考答案一、选择题(每小题3分,共30分)1、B【解析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,符合此定义的只有选项B.故选B.2、D【解析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定答案.【详解】A.如图,,对于该x的值,有两个y值与之对应,不是函数图象;B.如图,,对于该x的值,有两个y值与之对应,不是函数图象;C.如图,对于该x的值,有两个y值与之对应,不是函数图象;D.对每一个x的值,都有唯一确定的y值与之对应,是函数图象.故选:D.【点睛】本题考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.3、B【分析】根据全等三角形的判定(ASA)即可得到正确;根据相似三角形的判定可得正确;根据全等三角形的性质可得正确;根据相似三角形的性质和判定、勾股定理,即可得到答案.【详解】解:四边形是正方形,,,,,,故正确;,点四点共圆,∴,∴,故正确;,,,故正确;,,又,是等腰直角三角形,,,,,,,,,,又中,,,,故错误,故选.【点睛】本题考查全等三角形的判定(ASA)和性质、相似三角形的性质和判定、勾股定理,解题的关键是掌握全等三角形的判定(ASA)和性质、相似三角形的性质和判定.4、B【分析】先确定A、B两点坐标,然后再确定点C坐标,从而可求△ABC的面积,再根据三角形中位线的性质可知答案.【详解】∵函数与的图像相交于,两点∴联立解得∴点A、B坐标分别是∵过点作轴的平行线,交函数的图像于点∴把代入到中得,解得∴点C的坐标为∴∵OA=OB,OE∥AC∴OE是△ABC的中位线∴故答案选B.【点睛】本题是一道综合题,考查了一次函数与反比例函数和三角形中位线性质,能够充分调动所学知识是解题的关键.5、C【分析】必然事件就是一定发生的事件,根据定义即可判断.【详解】解:A、篮球队员在罚球线上投篮一次,未投中,是随机事件.B、掷一次骰子,向上一面的点数是6,是随机事件.C、任意画一个五边形,其内角和是540°,是必然事件.D、经过有交通信号灯的路口,遇到红灯,是随机事件.故选:C.【点睛】本题考查了必然事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6、B【分析】把点代入,解得的值,得出函数解析式,再把=3即可得到的值.【详解】把代入,得,解得=把=3,代入==-4故选B.【点睛】本题考查了二次函数的解析式,直接将坐标代入法是解题的关键.7、C【详解】试题分析:一次函数的图象有四种情况:①当,时,函数的图象经过第一、二、三象限;②当,时,函数的图象经过第一、三、四象限;③当,时,函数的图象经过第一、二、四象限;④当,时,函数的图象经过第二、三、四象限.由图象可知,函数的图象经过第二、三、四象限,所以,.根据一元二次方程根的判别式,方程根的判别式为,当时,,∴方程有两个不相等的实数根.故选C.8、C【分析】过A作AE⊥CP于E,过B作BF⊥DQ于F,则可得AE和BF的长,依据端点A与B之间的距离为10cm,即可得到可以通过闸机的物体的最大宽度.【详解】如图所示,过A作AE⊥CP于E,过B作BF⊥DQ于F,则Rt△ACE中,AE=AC=×54=27(cm),同理可得,BF=27cm,又∵点A与B之间的距离为10cm,∴通过闸机的物体的最大宽度为27+10+27=64(cm),故选C.【点睛】本题主要考查了特殊角的三角函数值,特殊角的三角函数值应用广泛,一是它可以当作数进行运算,二是具有三角函数的特点,在解直角三角形中应用较多.9、C【分析】因为OCP和ODQ为直角三角形,根据勾股定理可得OP、DQ、PQ的长度,又因为CPDQ,两直线平行内错角相等,∠PCE=∠EDQ,且∠CPE=∠DQE=90°,可证CPE∽DQE,可得,设PE=x,则EQ=14-x,解得x的取值,OE=OP-PE,则OE的长度可得.【详解】解:∵在⊙O中,直径AB=20,即半径OC=OD=10,其中CPAB,QDAB,∴OCP和ODQ为直角三角形,根据勾股定理:,,且OQ=6,∴PQ=OP+OQ=14,又∵CPAB,QDAB,垂直于用一直线的两直线相互平行,∴CPDQ,且C、D连线交AB于点E,∴∠PCE=∠EDQ,(两直线平行,内错角相等)且∠CPE=∠DQE=90°,∴CPE∽DQE,故,设PE=x,则EQ=14-x,∴,解得x=6,∴OE=OP-PE=8-6=2,故选:C.【点睛】本题考察了勾股定理、相似三角形的应用、两直线平行的性质、圆的半径,解题的关键在于证明CPE与DQE相似,并得出线段的比例关系.10、B【解析】由小明要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,直接利用概率公式求解即可求得答案.【详解】解:∵小明要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,
∴小明选择到甲社区参加实践活动的可能性为:.
故选:B.【点睛】本题考查概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.二、填空题(每小题3分,共24分)11、.【解析】试题解析:原式故答案为12、1【分析】根据点(x,y)关于原点对称的点是(-x,-y)列出方程,解出a,b的值代入计算即可.【详解】解:∵,关于原点对称∴,解得,∴,故答案为:1.【点睛】本题考查了关于原点对称的点的坐标的特点,熟知点(x,y)关于原点对称的点是(-x,-y)是解题的关键.13、【分析】如图(见解析),先根据等腰直角三角形的判定与性质可得,设,从而可得,再在中,利用直角三角形的性质、勾股定理可得,由此即可得出答案.【详解】如图,过点E作于点F,由题意得:,,是等腰直角三角形,,设,则,在中,,,,解得,则,故答案为:.【点睛】本题考查了等腰直角三角形的判定与性质、直角三角形的性质、勾股定理等知识点,通过作辅助线,构造两个直角三角形是解题关键.14、【分析】由解直角三角形,得,即可求出AB的值.【详解】解:根据题意,△ABC是直角三角形,∠A=90°,∴,∴;∴大楼AB的高度为米.故答案为:.【点睛】此题考查了解直角三角形的应用——仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.15、【分析】根据四边形内角和定理得图中四个扇形正好构成一个半径为1的圆,因此其面积之和就是圆的面积.【详解】解:∵图中四个扇形的圆心角的度数之和为四边形的四个内角的和,且四边形内角和为360°,∴图中四个扇形构成了半径为1的圆,∴其面积为:πr2=π×12=π.故答案为:π.【点睛】此题主要考查了四边形内角和定理,扇形的面积计算,得出图中阴影部分面积之和是半径为1的圆的面积是解题的关键.16、【分析】如图所示,∠AOB=θ,OA=r,AB=l,∠AOC=∠BOC=,根据,设AB=l=2a,OA=r=3a,根据等量代换得出∠BOC=∠BAE=,求出BE,利用勾股定理求出AE,即可表达出,代入计算即可.【详解】解:如图所示,∠AOB=θ,OA=r,AB=l,∠AOC=∠BOC=,∵AO=BO,∴OC⊥AB,∴,∴设AB=l=2a,OA=r=3a,过点A作AE⊥OB于点E,∵∠B+∠BOC=90°,∠B+∠BAE=90°,∴∠BOC=∠BAE=,∴,即,解得:,由勾股定理得:,∴,故答案为:.【点睛】本题考查了垂径定理以及锐角三角函数的定义,解题的关键是熟练掌握垂径定理的内容,作出辅助线,求出AE的值.17、【解析】试题分析:∵∠ACB=90°,∠ABC=30°,AC=2,∴∠A=90°﹣∠ABC=60°,AB=4,BC=2,∵CA=CA1,∴△ACA1是等边三角形,AA1=AC=BA1=2,∴∠BCB1=∠ACA1=60°,∵CB=CB1,∴△BCB1是等边三角形,∴BB1=2,BA1=2,∠A1BB1=90°,∴BD=DB1=,∴A1D=考点:旋转的性质.18、【分析】直接利用概率求法进而得出答案.【详解】∵一个质地均匀的小正方体,六个面分别标有数字1,1,2,4,5,5,∴随机掷一次小正方体,朝上一面的数字是奇数的概率是:.故答案为:.【点睛】此题主要考查了概率公式,正确掌握概率公式是解题关键.三、解答题(共66分)19、(1)(2)EG=3.【解析】(1)由点G是△ABC的重心,推出再根据三角形法则求出即可解决问题;
(2)想办法证明△AEG∽△ABD,可得【详解】(1)∵点G是△ABC的重心,∴∵∴(2)∵∠B=∠ACE,∠CAE=∠BAC,∴△ACE∽△ABC,∴∴AE=4,此时∵∠EAG=∠BAD,∴△AEG∽△ABD,∴【点睛】考查平面向量的线性运算以及相似三角形的判定与性质,掌握相似三角形的判定方法是解题的关键.20、(1)w=20x+1020;(2)费用最省方案为:购进A种树苗9棵,B种树苗8棵,所需费用为1200元.【分析】(1)根据题意可得等量关系:费用W=A种树苗a棵的费用+B种树苗(17−a)棵的费用可得函数关系式;(2)根据一次函数的性质与不等式的性质得到当x=9时,w有最小值.【详解】解:(1)w=80x+60(17-x)=20x+1020(2)∵k=20>0,w随着x的增大而增大又∵17-x<x,解得x>8.5,∴8.5<x<17,且x为整数∴当x=9时,w有最小值20×9+1020=1200(元)答:费用最省方案为:购进A种树苗9棵,B种树苗8棵,所需费用为1200元.【点睛】此题主要考查了一次函数和一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系与不等关系,列出函数关系式进行求解.21、参加旅游的人数40人.【分析】首先设有人参加这次旅游,判定,然后根据题意列出方程,再判定出符合题意的解即可.【详解】设有人参加这次旅游∵∴参加人数依题意得:解得:,当时,,符合题意.当时,,不符合题意答:参加旅游的人数40人.【点睛】此题主要考查一元二次方程的实际应用,解题关键是理解题意,列出方程.22、20%【分析】根据题意设该市政府从2017年到2019年对校舍建设投入资金的年平均增长率为x,根据:2017年投入资金×(1+增长率)2=2019年投入资金,列出方程求解即可.【详解】解:设该市政府从2017年到2019年对校舍建设投入资金的年平均增长率为x,列方程,解得.故该市政府从2017年到2019年对校舍建设投入资金的年平均增长率为20%.【点睛】本题主要考查一元二次方程的应用,由题意准确抓住相等关系并据此列出方程是解题的关键.23、(1)二次函数解析式为y=(x﹣2)2﹣1;一次函数解析式为y=x﹣1.(2)1≤x≤2.【分析】(1)将点A(1,0)代入y=(x-2)2+m求出m的值,根据点的对称性,将y=3代入二次函数解析式求出B的横坐标,再根据待定系数法求出一次函数解析式.(2)根据图象和A、B的交点坐标可直接求出kx+b≥(x-2)2+m的x的取值范围.【详解】解:(1)将点A(1,0)代入y=(x﹣2)2+m得,(1﹣2)2+m=0,解得m=﹣1.∴二次函数解析式为y=(x﹣2)2﹣1.当x=0时,y=2﹣1=3,∴C点坐标为(0,3).∵二次函数y=(x﹣2)2﹣1的对称轴为x=2,C和B关于对称轴对称,∴B点坐标为(2,3).将A(1,0)、B(2,3)代入y=kx+b得,,解得.∴一次函数解析式为y=x﹣1.(2)∵A、B坐标为(1,0),(2,3),∴当kx+b≥(x﹣2)2+m时,直线y=x﹣1的图象在二次函数y=(x﹣2)2﹣1的图象上方或相交,此时1≤x≤2.24、(1)证明见解析;(2)2;(3).【分析】(1)连接OH、OM,易证OH是△ABC的中位线,利用中位线的性质可证明△COH≌△MOH,所以∠HCO=∠HMO=90°,从而可知MH是⊙O的切线;(2)由切线长定理可知:MH=HC,再由点M是AC的中点可知AC=3,由tan∠ABC=,所以BC=4,从而可知⊙O的半径为2;(3)连接CN,AO,CN与AO相交于I,由AC、AN是⊙O的切线可知AO⊥CN,利用等面积可求出可求得CI的长度,设CE为x,然后利用勾股定理可求得CE的长度,利用垂径定理即可求得NQ.【详解】解:(1)连接OH、OM,∵H是AC的中点,O是BC的中点∴OH是△ABC的中位线∴OH∥AB,∴∠COH=∠ABC,∠MOH=∠OMB又∵OB=OM,∴∠OMB=∠MBO∴∠COH=∠MOH,在△COH与△MOH中,∵OC=OM,∠COH=∠MOH,OH=OH∴△COH≌△MOH(SAS)∴∠HCO=∠HMO=90°∴MH是⊙O的切线;(2)∵MH、AC是⊙O的切线∴HC=MH=∴AC=2HC=3∵tan∠ABC=,∴=∴BC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 污泥委托处置合同范例
- 单位物业工程合同范例
- 服装制版师习题
- 2025年聊城道路运输从业资格考试系统
- 售后返租合同范例
- 工程招商合同范例
- 商业演出合同范例
- 本地户外租赁合同范例
- 电控箱加工合同范例
- 2025年七台河货运从业资格证考试题库答案
- 铁路建设项目施工企业信用评价办法(铁总建设〔2018〕124号)
- 模具报价表精简模板
- 形式发票模板 PI模板 英文版
- 初一的最美的风景高分的作文600字
- 高考英语单项选择题题库题
- 检验检测机构资质认定现场评审日程表及签到表
- 完整版高低压开关柜投标文件技术标
- 兰州市行政区划代码表
- 管鲍之交-历史剧剧本(共4页)
- [交流][jtag]跟我学jtag协议破解——第一弹初识jtagtap状态机
- 尼康FM2说明书25页
评论
0/150
提交评论