2023-2024学年上海市嘉定区数学九年级第一学期期末学业水平测试试题含解析_第1页
2023-2024学年上海市嘉定区数学九年级第一学期期末学业水平测试试题含解析_第2页
2023-2024学年上海市嘉定区数学九年级第一学期期末学业水平测试试题含解析_第3页
2023-2024学年上海市嘉定区数学九年级第一学期期末学业水平测试试题含解析_第4页
2023-2024学年上海市嘉定区数学九年级第一学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年上海市嘉定区数学九年级第一学期期末学业水平测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图是由6个大小相同的小正方体叠成的几何体,则它的主视图是()A. B.C. D.2.如图,已知正方形ABCD,将对角线BD绕着点B逆时针旋转,使点D落在CB的延长线上的D′点处,那么sin∠AD′B的值是()A. B. C. D.3.一个几何体的三视图如图所示,则这个几何体是()A.球体 B.圆锥 C.棱柱 D.圆柱4.下面是由几个小正方体搭成的几何体,则这个几何体的左视图为()A. B. C. D.5.若二次根式在实数范围内有意义,则x的取值范围是A.x≠5 B.x<5 C.x≥5 D.x≤56.半径为R的圆内接正六边形的面积是()A.R2 B.R2 C.R2 D.R27.函数的顶点坐标是()A. B. C. D.8.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16 B.q>16C.q≤4 D.q≥49.已知sinα=,求α.若以科学计算器计算且结果以“度,分,秒”为单位,最后应该按键()A.AC B.2ndF C.MODE D.DMS10.下列是一元二次方程有()①;②;③;④.A. B. C. D.二、填空题(每小题3分,共24分)11.若函数y=(a-1)x2-4x+2a的图象与x轴有且只有一个交点,则a的值为_____.12.如图,为了测量河宽AB(假设河的两岸平行),测得∠ACB=30°,∠ADB=60°,CD=60m,则河宽AB为m(结果保留根号).13.因式分解:____.14.已知点P是正方形ABCD内部一点,且△PAB是正三角形,则∠CPD=_____度.15.已知是关于的方程的一个根,则______.16.若代数式4x2-2x-5与2x2+1的值互为相反数,则x的值是____.17.一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是__________18.如图,中,已知,,点在边上,.把线段绕着点逆时针旋转()度后,如果点恰好落在的边上,那么__________.三、解答题(共66分)19.(10分)已知二次函数的图象如图所示.(1)求这个二次函数的表达式;(2)当﹣1≤x≤4时,求y的取值范围.20.(6分)已知关于x的一元二次方程x2+2x+2k-5=0有两个实数根.(1)求实数k的取值范围.(2)若方程的一个实数根为4,求k的值和另一个实数根.(3)若k为正整数,且该方程的根都是整数,求k的值.21.(6分)用适当的方法解下列方程.(1)3x(x+3)=2(x+3)(2)2x2﹣4x﹣3=1.22.(8分)如图,在△ABC中,AB=,∠B=45°,.求△ABC的周长.23.(8分)某水果商场经销一种高档水果,原价每千克50元,连续两次降价后每千克32元,若每每次下降的百分率相同.(1)求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,且要尽快减少库存,那么每千克应涨价多少元?24.(8分)有5张不透明的卡片,除正面上的图案不同外,其它均相同.将这5张卡片背面向上洗匀后放在桌面上.若从中随机抽取1张卡片后不放回,再随机抽取1张,请用画树状图或列表的方法,求两次所抽取的卡片恰好都是轴对称图形的概率.25.(10分)如图,某中学准备在校园里利用院墙的一段再用米长的篱笆围三面,形成一个矩形花园(院墙长米).(1)设米,则___________米;(2)若矩形花园的面积为平方米,求篱笆的长.26.(10分)已知抛物线y=x2﹣2ax+m.(1)当a=2,m=﹣5时,求抛物线的最值;(2)当a=2时,若该抛物线与坐标轴有两个交点,把它沿y轴向上平移k个单位长度后,得到新的抛物线与x轴没有交点,请判断k的取值情况,并说明理由;(3)当m=0时,平行于y轴的直线l分别与直线y=x﹣(a﹣1)和该抛物线交于P,Q两点.若平移直线l,可以使点P,Q都在x轴的下方,求a的取值范围.

参考答案一、选择题(每小题3分,共30分)1、C【分析】找到从正面看所得到的图形即可.【详解】解:它的主视图是:故选:C.【点睛】本题考查了三视图的知识,掌握主视图是解题的关键.2、A【分析】设,根据正方形的性质可得,再根据旋转的性质可得的长,然后由勾股定理可得的长,从而根据正弦的定义即可得.【详解】设由正方形的性质得由旋转的性质得在中,则故选:A.【点睛】本题考查了正方形的性质、旋转的性质、正弦的定义等知识点,根据旋转的性质得出的长是解题关键.3、D【解析】试题分析:观察可知,这个几何体的俯视图为圆,主视图与左视图都是矩形,所以这个几何体是圆柱,故答案选D.考点:几何体的三视图.4、D【分析】根据几何体的三视图的定义以及性质进行判断即可.【详解】根据几何体的左视图的定义以及性质得,这个几何体的左视图为故答案为:D.【点睛】本题考查了几何体的三视图,掌握几何体三视图的性质是解题的关键.5、D【解析】二次根式中被开方数非负即5-x≧0∴x≤5故选D6、C【分析】连接OE、OD,由正六边形的特点求出判断出△ODE的形状,作OH⊥ED,由特殊角的三角函数值求出OH的长,利用三角形的面积公式即可求出△ODE的面积,进而可得出正六边形ABCDEF的面积.【详解】解:如图示,连接OE、OD,

∵六边形ABCDEF是正六边形,

∴∠DEF=120°,

∴∠OED=60°,

∵OE=OD=R,

∴△ODE是等边三角形,

作OH⊥ED,则∴∴故选:C.【点睛】本题考查了正多边形和圆的知识,理解正六边形被半径分成六个全等的等边三角形是解答此题的关键.7、B【分析】根据题目中的函数解析式,可以直接写出该函数的顶点坐标,本题得以解决.【详解】解:∵函数,∴该函数的顶点坐标是,故选:B.【点睛】本题主要考查二次函数的图像,关键是根据二次函数的顶点式直接得到顶点坐标即可.8、A【解析】∵关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,∴△>0,即82-4q>0,∴q<16,故选A.9、D【分析】根据利用科学计算器由三角函数值求角度的使用方法,容易进行选择.【详解】若以科学计算器计算且结果以“度,分,秒”为单位,最后应该按DMS,故选:D.【点睛】本题考查科学计算器的使用方法,属基础题.10、A【解析】根据一元二次方程的定义:含有一个未知数,并且未知数的最高次数是2的整式是一元二次方程.然后对每个方程作出准确的判断.【详解】解:①符合一元二次方程的定义,故正确;②方程二次项系数可能为0,故错误;③整理后不含二次项,故错误;④不是整式,故错误,故选:A.【点睛】本题考查的是一元二次方程的定义,根据定义对每个方程进行分析,然后作出准确的判断.二、填空题(每小题3分,共24分)11、-1或2或1【分析】分该函数是一次函数和二次函数两种情况求解,若为二次函数,由抛物线与x轴只有一个交点时b2-4ac=0,据此求解可得.【详解】∵函数y=(a-1)x2-4x+2a的图象与x轴有且只有一个交点,当函数为二次函数时,b2-4ac=16-4(a-1)×2a=0,解得:a1=-1,a2=2,当函数为一次函数时,a-1=0,解得:a=1.故答案为-1或2或1.12、【详解】解:∵∠ACB=30°,∠ADB=60°,

∴∠CAD=30°,

∴AD=CD=60m,

在Rt△ABD中,

AB=AD•sin∠ADB=60×=(m).故答案是:.13、【分析】先提取公因式ab,再利用平方差公式分解即可得答案.【详解】4a3b3-ab=ab(a2b2-1)=ab(ab+1)(ab-1)故答案为:ab(ab+1)(ab-1)【点睛】本题考查了因式分解,因式分解的方法有提取公因式法、公式法、十字相乘法、分组分解法等,根据题目的特点,灵活运用适当的方法是解题关键.14、1【解析】如图,先求出∠DAP=∠CBP=30°,由AP=AD=BP=BC,就可以求出∠PDC=∠PCD=15°,进而得出∠CPD的度数.【详解】解:如图,∵四边形ABCD是正方形,∴AD=AB=BC,∠DAB=∠ABC=90°,∵△ABP是等边三角形,∴AP=BP=AB,∠PAB=∠PBA=60°,∴AP=AD=BP=BC,∠DAP=∠CBP=30°.∴∠BCP=∠BPC=∠APD=∠ADP=75°,∴∠PDC=∠PCD=15°,∴∠CPD=180°﹣∠PDC﹣∠PCD=180°﹣15°﹣15°=1°.故答案为1.【点睛】本题考查了正方形的性质的运用,等边三角形的性质的运用,等腰三角形的性质的运用,解答时运用三角形内角和定理是关键.15、9【分析】根据一元二次方程根的定义得,整体代入计算即可.【详解】∵是关于的方程的一个根,∴,即,∴故答案为:.【点睛】考查了一元二次方程的解的定义以及整体思想的运用.16、1或-【解析】由题意得:4x2-2x-5+2x2+1=0,解得:x=1或x=-,故答案为:1或-.17、(5,0)【详解】解:跳蚤运动的速度是每秒运动一个单位长度,(0,0)→(0,1)→(1,1)→(1,0)用的秒数分别是1秒,2秒,3秒,到(2,0)用4秒,到(2,2)用6秒,到(0,2)用8秒,到(0,3)用9秒,到(3,3)用12秒,到(4,0)用16秒,依此类推,到(5,0)用35秒.故第35秒时跳蚤所在位置的坐标是(5,0).18、或【分析】分两种情况:①当点落在AB边上时,②当点落在AB边上时,分别求出的值,即可.【详解】①当点落在AB边上时,如图1,∴DB=DB′,∴∠B=∠DB′B=55°,∴∠BDB′=180°-55°-55°=70°;②当点落在AB边上时,如图2,∴DB=DB′=2CD,∵,∴∠CB′D=30°,∴∠BDB′=30°+90°=120°.故答案是:或.【点睛】本题主要考查等腰三角形的性质和直角三角形的性质定理,画出图形分类讨论,是解题的关键.三、解答题(共66分)19、(1)y=﹣(x﹣2)2+1;(2)﹣≤y≤1.【分析】(1)设顶点式y=a(x﹣2)2+1,然后把(0,1)代入求出a即可得到抛物线解析式;(2)分别计算自变量为﹣1和1对应的函数值,然后根据二次函数的性质解决问题.【详解】解:(1)设抛物线解析式为y=a(x﹣2)2+1,把(0,1)代入得1a+1=1,解得a=﹣,所以抛物线解析式为y=-(x﹣2)2+1.(2)当x=﹣1时,y=﹣(﹣1﹣2)2+1=﹣;当x=1时,y=﹣(1﹣2)2+1=1,∴当-1≤x≤2时,﹣≤y≤1;当2≤x≤1时,1≤y≤1所以当﹣1≤x≤1时,y的取值范围为﹣≤y≤1.【点睛】本题考查了待定系数法求二次函数的解析式和二次函数的性质.在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出函数关系式,从而代入数值求解.20、(1)k≤1;(2)k的值为-,另一个根为-2;(1)k的值为1或1.【分析】(1)根据一元二次方程根的判别式列不等式即可得答案;(2)根据一元二次方程根与系数的关系即可得答案;(1)由(1)可得k≤1,根据k为正整数可得k=1,k=2或k=1,分别代入方程,求出方程的根,根据该方程的根都是整数即可得答案.【详解】(1)∵关于x的一元二次方程x2+2x+2k﹣5=0有两个实数根,∴△=22﹣4×1×(2k﹣5)=﹣8k+24≥0,解得:k≤1,∴k的取值范围是k≤1.(2)设方程的另一个根为m,∴4+m=-2,解得:m=-2,∴2k﹣5=4×(-2)∴k=-,∴k的值为-,另一个根为-2.(1)∵k为正整数,且k≤1,∴k=1或k=2或k=1,当k=1时,原方程为x2+2x﹣1=0,解得x1=﹣1,x2=1,当k=2时,原方程为x2+2x-1=0,解得x1=-1+,x2=-1-,(舍去)当k=1时,原方程为x2+2x+1=0,解得x1=x2=-1,∴k的值为1或1.【点睛】本题考查一元二次方程根的判别式及根与系数的关系,一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根;若方程的两个实数根为x1、x2,那么,x1+x2=,x1·x2=;正确运用一元二次方程的根的判别式并熟练掌握韦达定理是解题关键.21、(1)x1=−3,x2=(2)【分析】(1)利用因式分解法解方程即可;(2)利用公式法解方程即可.【详解】(1)3x(x+3)=2(x+3)3x(x+3)-2(x+3)=1(x+3)(3x-2)=13x-2=1或x+3=1∴x1=,x2=-3;(2)2x2-4x-3=1a=2,b=-4,c=-3,△=16+24=41>1,,∴x1=1+,x2=1-.【点睛】本题考查了一元二次方程的解法,解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.22、【分析】过点A作AD⊥BC于D,在Rt△ABD中解直角三角形可得出AD、BD的长,再在Rt△ACD中解直角三角形求出CD的长,利用勾股定理求出AC,然后根据三角形的周长公式列式计算即可得解.【详解】解:过点A作AD⊥BC,交BC于点D.∵Rt△ADB中,∠B=45°,∴∠BAD=∠B=45°,∴AD=BD,又AB=,∴AD=AB·sin∠B=×=1=BD.∵Rt△ACD中,,∴DC=2,∴BC=BD+DC=1.又Rt△ADC中,AD=1,DC=2,∴AC==.∴△ABC的周长为.【点睛】本题考查了解直角三角以及勾股定理,作辅助线构造出直角三角形是解题的关键.23、(1)每次下降的百分率为20%;(2)该商场要保证每天盈利6000元,那么每千克应涨价5元.【分析】(1)设每次降价的百分率为a,(1﹣a)2为两次降价的百分率,50降至32就是方程的平衡条件,列出方程求解即可;(2)根据题意列出一元二次方程,然后求出其解,最后根据题意确定其值.【详解】解:(1)设每次下降的百分率为a,根据题意,得:50(1﹣a)2=32,解得:a=1.8(舍)或a=0.2,答:每次下降的百分率为20%;(2)设每千克应涨价x元,由题意,得(10+x)(500﹣20x)=6000,整理,得x2﹣15x+50=0,解得:x1=5,x2=10,因为要尽快减少库存,所以x=5符合题意.答:该商场要保证每天盈利6000元,那么每千克应涨价5元.【点睛】本题主要考查了一元二次方程应用,关键是根据题意找准等量关系列出方程是解答本题的关键.24、【分析】画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【详解】解:在这些图形中,B,C,E是轴对称图形,画树状图如下:由树状图知,共有20种等可能结果,其中两次所抽取的卡片恰好都是轴对称图形的有6种结果,两次所抽取的卡片恰好都是轴对称图形的概率为.【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.25、(1);(2)15米【分析】(1)根据题意知道的长度=篱笆总长-列出式子即可;(2)根据(1)中的代数式列出方程,解方程即可.【详解】解:(1),(2)根据题意得方程:,解得:,,当时,(不合题意,舍去),当时,(符合题意).答:花园面积为米时,篱笆长为米.【点睛】本题主要考察列代数式、一元二次方程的应用,注意篱笆只围三面有一面是墙.26、(3)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论