




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年山东省日照岚山区数学九年级第一学期期末学业质量监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.某厂2017年产值3500万元,2019年增加到5300万元.设平均每年增长率为,则下面所列方程正确的是()A. B.C. D.2.定义:在等腰三角形中,底边与腰的比叫做顶角的正对,顶角的正对记作,即底边:腰.如图,在中,,.则()A. B. C. D.3.已知当x>0时,反比例函数y=的函数值随自变量的增大而减小,此时关于x的方程x2﹣2(k+1)x+k2﹣1=0的根的情况为()A.有两个相等的实数根 B.没有实数根C.有两个不相等的实数根 D.无法确定4.入冬以来气温变化异常,在校学生患流感人数明显增多,若某校某日九年级8个班因病缺课人数分别为2、6、4、6、10、4、6、2,则这组数据的众数是()A.5人 B.6人 C.4人 D.8人5.有5个完全相同的卡片,正面分别写有1,2,3,4,5这5个数字,现把卡片背面朝上,从中随机抽取一个卡片,其数字是奇数的概率为()A. B. C. D.6.已知一个扇形的弧长为3π,所含的圆心角为120°,则半径为()A.9 B.3 C. D.7.如图,在ABCD中,∠DAB=10°,AB=8,AD=1.⊙O分别切边AB,AD于点E,F,且圆心O好落在DE上.现将⊙O沿AB方向滚动到与BC边相切(点O在ABCD的内部),则圆心O移动的路径长为()A.2 B.4 C.5﹣ D.8﹣28.某校为了了解九年级学生的体能情况,随机抽取了名学生测试1分钟仰卧起坐的次数,统计结果并绘制成如图所示的频数分布直方图.已知该校九年级共有名学生,请据此估计,该校九年级分钟仰卧起坐次数在次之间的学生人数大约是()A. B.C. D.9.若二次函数的图象的顶点在第一象限,且经过点(0,1)和(-1,0),则的值的变化范围是()A. B. C. D.10.如图,点在二次函数的图象上,则方程解的一个近似值可能是()A.2.18 B.2.68 C.-0.51 D.2.45二、填空题(每小题3分,共24分)11.设二次函数y=x2﹣2x﹣3与x轴的交点为A,B,其顶点坐标为C,则△ABC的面积为_____.12.如图,在Rt△ABC中,∠ABC=90°,BD⊥AC,垂足为点D,如果BC=4,sin∠DBC=,那么线段AB的长是_____.13.如图,中,,点位于第一象限,点为坐标原点,点在轴正半轴上,若双曲线与的边、分别交于点、,点为的中点,连接、.若,则为_______________.14.如图,PA与⊙O相切于点A,AB是⊙O的直径,在⊙O上存在一点C满足PA=PC,连结PB、AC相交于点F,且∠APB=3∠BPC,则=_____.15.如图,在四边形ABCD中,,E、F、G分别是AB、CD、AC的中点,若,,则等于______________.16.如图,四边形ABCD内接于⊙O,连结AC,若∠BAC=35°,∠ACB=40°,则∠ADC=_____°.17.代数式中的取值范围是__________.18.在锐角中,=0,则∠C的度数为____.三、解答题(共66分)19.(10分)如图,在△ABC中,CD平分∠ACB,DE∥BC,若,且AC=14,求DE的长.20.(6分)如图,中,,,为内部一点,且.(1)求证:;(2)求证:;(3)若点到三角形的边,,的距离分别为,,,求证.21.(6分)用适当的方法解下列方程:(1)(2)22.(8分)每年九月开学前后是文具盒的销售旺季,商场专门设置了文具盒专柜李经理记录了天的销售数量和销售单价,其中销售单价(元/个)与时间第天(为整数)的数量关系如图所示,日销量(个)与时间第天(为整数)的函数关系式为:直接写出与的函数关系式,并注明自变量的取值范围;设日销售额为(元),求(元)关于(天)的函数解析式;在这天中,哪一天销售额(元)达到最大,最大销售额是多少元;由于需要进货成本和人员工资等各种开支,如果每天的营业额低于元,文具盒专柜将亏损,直接写出哪几天文具盒专柜处于亏损状态23.(8分)计算的值.24.(8分)学校决定每班选取名同学参加全国交通安全日细节关乎生命安全文明出行主题活动启动仪式,班主任决定从名同学(小明、小山、小月、小玉)中通过抽签的方式确定名同学去参加该活动.抽签规则:将名同学的姓名分别写在张完全相同的卡片正面,把张卡片的背面朝上,洗匀后放在桌子上,王老师先从中随机抽取一张卡片,记下名字,再从剩余的张卡片中随机抽取一张,记下名字.(1)小刚被抽中是___事件,小明被抽中是____事件(填不可能、必然、随机),第一次抽取卡片抽中是小玉的概率是______;(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出小月被抽中的概率.25.(10分)抛物线与轴交于两点(点在点的左侧),与轴交于点.已知,抛物线的对称轴交轴于点.(1)求出的值;(2)如图1,连接,点是线段下方抛物线上的动点,连接.点分别在轴,对称轴上,且轴.连接.当的面积最大时,请求出点的坐标及此时的最小值;(3)如图2,连接,把按照直线对折,对折后的三角形记为,把沿着直线的方向平行移动,移动后三角形的记为,连接,,在移动过程中,是否存在为等腰三角形的情形?若存在,直接写出点的坐标;若不存在,请说明理由.26.(10分)如图1,在中,∠B=90°,,点D,E分别是边BC,AC的中点,连接将绕点C按顺时针方向旋转,记旋转角为.问题发现:当时,_____;当时,_____.拓展探究:试判断:当时,的大小有无变化?请仅就图2的情况给出证明.问题解决:当旋转至A、D、E三点共线时,直接写出线段BD的长.
参考答案一、选择题(每小题3分,共30分)1、D【分析】由题意设每年的增长率为x,那么第一年的产值为3500(1+x)万元,第二年的产值3500(1+x)(1+x)万元,然后根据今年上升到5300万元即可列出方程.【详解】解:设每年的增长率为x,依题意得3500(1+x)(1+x)=5300,即.故选:D.【点睛】本题考查列出解决问题的方程,解题的关键是正确理解“利润每月平均增长率为x”的含义以及找到题目中的等量关系.2、C【分析】证明△ABC是等腰直角三角形即可解决问题.【详解】解:∵AB=AC,
∴∠B=∠C,
∵∠A=2∠B,
∴∠B=∠C=45°,∠A=90°,
∴在Rt△ABC中,BC==AC,
∴sin∠B•sadA=,故选:C.【点睛】本题考查解直角三角形,等腰直角三角形的判定和性质三角函数等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.3、C【分析】由反比例函数的增减性得到k>0,表示出方程根的判别式,判断根的判别式的正负即可得到方程解的情况.【详解】∵反比例函数y,当x>0时,y随x的增大而减小,∴k>0,∴方程中,△==8k+8>0,∴方程有两个不相等的实数根.故选C.【点睛】本题考查了根的判别式,以及反比例函数的性质,熟练掌握反比例函数的性质是解答本题的关键.4、B【解析】找出这组数据出现次数最多的那个数据即为众数.【详解】解:∵数据2、6、4、6、10、4、6、2,中数据6出现次数最多为3次,∴这组数据的众数是6.故选:B.【点睛】本题考查众数的概念,出现次数最多的数据为这组数的众数.5、D【分析】让正面的数字是奇数的情况数除以总情况数即为所求的概率.【详解】解:∵从写有数字1,2,3,4,5这5张卡片中抽取一张,其中正面数字是奇数的有1、3、5这3种结果,∴正面的数字是奇数的概率为;故选D.【点睛】此题主要考查了概率公式的应用,明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况数与总情况数之比.6、C【分析】根据弧长的公式进行计算即可.【详解】解:设半径为r,∵扇形的弧长为3π,所含的圆心角为120°,∴=3π,∴r=,故选:C.【点睛】此题考查的是根据弧长和圆心角求半径,掌握弧长公式是解决此题的关键.7、B【分析】如图所示,⊙O滚过的路程即线段EN的长度.EN=AB-AE-BN,所以只需求AE、BN的长度即可.分别根据AE和BN所在的直角三角形利用三角函数进行计算即可.【详解】解:连接OE,OA、BO.∵AB,AD分别与⊙O相切于点E、F,∴OE⊥AB,OF⊥AD,∴∠OAE=∠OAD=30°,在Rt△ADE中,AD=1,∠ADE=30°,∴AE=AD=3,∴OE=AE=,∵AD∥BC,∠DAB=10°,∴∠ABC=120°.设当运动停止时,⊙O′与BC,AB分别相切于点M,N,连接O′N,O′M.同理可得,∠BO′N为30°,且O′N为,∴BN=O′N•tan30°=1cm,EN=AB﹣AE﹣BN=8﹣3﹣1=2.∴⊙O滚过的路程为2.故选:B.【点睛】本题考查了切线的性质,平行四边形的性质及解直角三角形等知识.关键是计算出AE和BN的长度.8、B【分析】用样本中次数在30~35次之间的学生人数所占比例乘以九年级总人数可得.【详解】解:该校九年级1分钟仰卧起坐次数在30~35次之间的学生人数大约是×150=25(人),故选:B.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.9、A【分析】代入两点的坐标可得,,所以,由抛物线的顶点在第一象限可得且,可得,再根据、,可得S的变化范围.【详解】将点(0,1)代入中可得将点(-1,0)代入中可得∴∵二次函数图象的顶点在第一象限∴对称轴且∴∵,∴∴故答案为:A.【点睛】本题考查了二次函数的系数问题,掌握二次函数的性质以及各系数间的关系是解题的关键.10、D【分析】根据自变量两个取值所对应的函数值是-0.51和0.54,可得当函数值为0时,x的取值应在所给的自变量两个值之间.【详解】解:∵图象上有两点分别为A(2.18,-0.51)、B(2.68,0.54),
∴当x=2.18时,y=-0.51;x=2.68时,y=0.54,
∴当y=0时,2.18<x<2.68,
只有选项D符合,
故选:D.【点睛】本题考查了图象法求一元二次方程的近似值,用到的知识点为:点在函数解析式上,点的横纵坐标适合这个函数解析式;二次函数值为0,就是函数图象与x轴的交点,跟所给的接近的函数值对应的自变量相关.二、填空题(每小题3分,共24分)11、1【解析】首先求出A、B的坐标,然后根据坐标求出AB、CD的长,再根据三角形面积公式计算即可.【详解】解:∵y=x2﹣2x﹣3,设y=0,∴0=x2﹣2x﹣3,解得:x1=3,x2=﹣1,即A点的坐标是(﹣1,0),B点的坐标是(3,0),∵y=x2﹣2x﹣3,=(x﹣1)2﹣4,∴顶点C的坐标是(1,﹣4),∴△ABC的面积=×4×4=1,故答案为1.【点睛】本题考查了抛物线与x轴的交点,二次函数的性质,二次函数的三种形式的应用,主要考查学生运用性质进行计算的能力,题目比较典型,难度适中.12、2.【分析】在中,根据直角三角形的边角关系求出CD,根据勾股定理求出BD,在在中,再求出AB即可.【详解】解:在Rt△BDC中,∵BC=4,sin∠DBC=,∴,∴,∵∠ABC=90°,BD⊥AC,∴∠A=∠DBC,在Rt△ABD中,∴,故答案为:2.【点睛】考查直角三角形的边角关系,勾股定理等知识,在不同的直角三角形中利用合适的边角关系式正确解答的关键.13、【分析】根据反比例函数关系式与面积的关系得S△COE=S△BOD=3,由C是OA的中点得S△ACD=S△COD,由CE∥AB,可知△COE∽△AOB,由面积比是相似比的平方得,求出△ABC的面积,从而求出△AOD的面积,得出结论.【详解】过C作CE⊥OB于E,∵点C、D在双曲线(x>0)上,∴S△COE=S△BOD,∵S△OBD=3,∴S△COE=3,∵CE∥AB,∴△COE∽△AOB,∴,∵C是OA的中点,∴OA=2OC,∴,∴S△AOB=4×3=12,∴S△AOD=S△AOB−S△BOD=12−3=9,∵C是OA的中点,∴S△ACD=S△COD,∴S△COD=,故答案为.【点睛】本题考查了反比例函数系数k的几何意义,即在反比例函数的图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|,所成的三角形的面积是定值|k|,且保持不变.14、.【分析】连接OP,OC,证明△OAP≌△OCP,可得PC与⊙O相切于点C,证明BC=CP,设OM=x,则BC=CP=AP=2x,PM=y,证得△AMP∽△OAP,可得:,证明△PMF∽△BCF,由可得出答案.【详解】解:连接OP,OC.∵PA与⊙O相切于点A,PA=PC,∴∠OAP=90°,∵OA=OC,OP=OP,∴△OAP≌△OCP(SSS),∴∠OAP=∠OCP=90°,∴PC与⊙O相切于点C,∵∠APB=3∠BPC,∠APO=∠CPO,∴∠CPB=∠OPB,∵AB是⊙O的直径,∴∠BCA=90°,∵OP⊥AC,∴OP∥BC,∴∠CBP=∠CPB,∴BC=CP=AP.∵OA=OB,∴OM=.设OM=x,则BC=CP=AP=2x,PM=y,∵∠OAP=∠AMP=90°,∠MPA=∠APO,∴△AMP∽△OAP,∴.∴AP2=PM•OP,∴(2x)2=y(y+x),解得:,(舍去).∵PM∥BC,∴△PMF∽△BCF,∴=.故答案为:.【点睛】本题考查了切线的判定与性质,等腰三角形的判定与性质,相似三角形的判定与性质,圆周角定理.正确作出辅助线,熟练掌握相似三角形的判定与性质是解题的关键.15、36°【分析】根据三角形中位线定理得到FG∥AD,FG=AD,GE∥BC,GE=BC,根据等腰三角形的性质、三角形内角和定理计算即可.【详解】解:∵F、G分别是CD、AC的中点,∴FG∥AD,FG=AD,∴∠FGC=∠DAC=15°,∵E、G分别是AB、AC的中点,∴GE∥BC,GE=BC,∴∠EGC=180°-∠ACB=93°,∴∠EGF=108°,∵AD=BC,∴GF=GE,∴∠FEG=×(180°-108°)=36°;故答案为:36°.【点睛】本题考查的是三角形中位线定理、等腰三角形的性质,三角形的中位线平行于第三边,且等于第三边的一半.16、1【解析】根据三角形内角和定理求出,根据圆内接四边形的性质计算,得到答案.【详解】,四边形ABCD内接于,,故答案为1.【点睛】本题考查的是圆内接四边形的性质、三角形内角和定理,掌握圆内接四边形的对角互补是解题的关键.17、;【分析】根据二次根式被开方数大于等于0,列出不等式即可求出取值范围.【详解】∵二次根式有意义的条件是被开方数大于等于0∴解得故答案为:.【点睛】本题考查二次根式有意义的条件,熟练掌握被开方数大于等于0是解题的关键.18、75°【分析】由非负数的性质可得:,可求,从而利用三角形的内角和可得答案.【详解】解:由题意,得sinA=,cosB=,解得∠A=60°,∠B=45°,∠C=180°﹣∠A﹣∠B=75°,故答案为:75°.【点睛】本题考查了非负数的性质:偶次方、三角形的内角和定理,特殊角的三角函数值,掌握以上知识是解题的关键.三、解答题(共66分)19、DE=8.【分析】先根据角平分线的性质和平行线的性质证得,再根据平行线分线段成比例即可得.【详解】如图,CD平分又,即故DE的长为8.【点睛】本题考查了角平分线的性质、平行线的性质、等腰三角形的性质、平行线分线段成比例,通过等角对等边证出是解题关键.20、(1)见解析;(2)见解析;(3)见解析.【分析】(1)根据,利用两角分别相等的两个三角形相似即可证得结果;(2)利用相似三角形对应边成比例结合等腰直角三角形的性质可得,,,从而求得结果;(3)根据两角分别相等的两个三角形相似,可证得,求得,由可得,从而证得结论.【详解】(1)∵,,∴又,∴∴又∵,∴(2)∵∴在中,,∴∴,∴(3)如图,过点作,,交、于点,,∴,,,∵∴,∴,又∵∴,∴,∴,即,∴∵,∴.∴∴.即:.【点睛】本题主要考查了等腰直角三角形的性质,相似三角形的判定和性质,综合性较强,有一定的难度.21、(1),;(2),【分析】(1)移项,两边同时加1,开方,即可得出两个一元一次方程,求出方程的解即可;(2)先分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】(1),.(2),,.【点睛】本题考查了解一元二次方程,有直接开平方法、配方法、公式法、因式分解法,仔细观察运用合适的方法能简便计算.22、(1)y=,(2)w=,在这15天中,第9天销售额达到最大,最大销售额是1元,(3)第13天、第14天、第15天这3天,专柜处于亏损状态.【分析】(1)用待定系数法可求与的函数关系式;(2)利用总销售额=销售单价×销售量,分三种情况,找到(元)关于(天)的函数解析式,然后根据函数的性质即可找到最大值.(3)先根据第(2)问的结论判断出在这三段内哪一段内会出现亏损,然后列出不等式求出x的范围,即可找到答案.【详解】解:(1)当时,设直线的表达式为将代入到表达式中得解得∴当时,直线的表达式为∴y=,(2)由已知得:w=py.当1≤x≤5时,w=py=(-x+15)(20x+180)=-20x2+120x+2700=-20(x-3)2+2880,当x=3时,w取最大值2880,当5<x≤9时,w=10(20x+180)=200x+1800,∵x是整数,200>0,∴当5<x≤9时,w随x的增大而增大,∴当x=9时,w有最大值为200×9+1800=1,当9<x≤15时,w=10(-60x+900)=-600x+9000,∵-600<0,∴w随x的增大而减小,又∵x=9时,w=-600×9+9000=1.∴当9<x≤15时,W的最大值小于1综合得:w=,在这15天中,第9天销售额达到最大,最大销售额是1元.(3)当时,当时,y有最小值,最小值为∴不会有亏损当时,当时,y有最小值,最小值为∴不会有亏损当时,解得∵x为正整数∴∴第13天、第14天、第15天这3天,专柜处于亏损状态.【点睛】本题主要考查二次函数和一次函数的实际应用,掌握二次函数和一次函数的性质是解题的关键.23、【分析】分别根据有理数的乘方、负整数指数幂、绝对值的性质及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可;【详解】解:原式;【点睛】本题主要考查了特殊角的三角函数值,负整数指数幂,掌握特殊角的三角函数值,负整数指数幂是解题的关键.24、(1)不可能;随机;;(2).【分析】(1)根据随机事件和不可能事件的概念及概率公式解答可得;
(2)列举出所有情况,看所求的情况占总情况的多少即可.【详解】(1)小刚不在班主任决定的名同学(小明、小山、小月、小玉)之中,所以“小刚被抽中”是不可能事件;“小明被抽中”是随机事件,第一次抽取卡片有4种等可能结果,其中小玉被抽中的有1种结果,所以第一次抽取卡片抽中是小玉的概率是;故答案为:不可能、随机、;(2)解:A表示小明,B表示小山,C表示小月,D表示小玉,则画树状图为:共有12种等可能的结果数,其中抽到C有6种,∴P(抽中小月)=.【点睛】本题主要考查了树状图或列表法求概率,列表法可以不重复不遗漏地列出所有可能的结果,适用于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.25、(1);(2),最小值为;(3)或或或或.【分析】(1)由抛物线的对称性可得到,然后将A、B、C坐标代入抛物线解析式,求出a、b、c的值即可得到抛物线解析式;(2)利用待定系数法求出直线BC解析式,作轴交于点,设,则,表示出PQ的长度,然后得到△PBC的面积表达式,根据二次函数最值问题求出P点坐标,再把向左移动1个单位得,连接,易得即为最小值;(3)由题意可知在直线上运动,设,则,分别讨论:①,②,③,建立方程求出m的值,即可得到的坐标.【详解】解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论