2023-2024学年山东省东平县实验中学数学九年级第一学期期末质量检测模拟试题含解析_第1页
2023-2024学年山东省东平县实验中学数学九年级第一学期期末质量检测模拟试题含解析_第2页
2023-2024学年山东省东平县实验中学数学九年级第一学期期末质量检测模拟试题含解析_第3页
2023-2024学年山东省东平县实验中学数学九年级第一学期期末质量检测模拟试题含解析_第4页
2023-2024学年山东省东平县实验中学数学九年级第一学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年山东省东平县实验中学数学九年级第一学期期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.时钟上的分针匀速旋转一周需要60分钟,则经过10分钟,分针旋转了().A.10° B.20° C.30° D.60°2.在平面直角坐标系xOy中,以点(3,4)为圆心,4为半径的圆与y轴()A.相交 B.相切 C.相离 D.无法确定3.二次函数y=3(x+4)2﹣5的图象的顶点坐标为()A.(4,5) B.(﹣4,5) C.(4,﹣5) D.(﹣4,﹣5)4.二次函数y=﹣x2+2mx(m为常数),当0≤x≤1时,函数值y的最大值为4,则m的值是()A.±2 B.2 C.±2.5 D.2.55.如图,△ABC的顶点都在方格纸的格点上,那么的值为()A. B. C. D.6.如图,在△ABC中,∠B=80°,∠C=40°,直线l平行于BC.现将直线l绕点A逆时针旋转,所得直线分别交边AB和AC于点M、N,若△AMN与△ABC相似,则旋转角为()A.20° B.40° C.60° D.80°7.若分式的运算结果为,则在中添加的运算符号为()A.+ B.- C.+或÷ D.-或×8.已知函数,当时,<x<,则函数的图象可能是下图中的()A. B.C. D.9.若a是方程的一个解,则的值为A.3 B. C.9 D.10.将抛物线y=2x2经过怎样的平移可得到抛物线y=2(x+3)2+4(

)A.先向左平移3个单位,再向上平移4个单位 B.先向左平移3个单位,再向下平移4个单位C.先向右平移3个单位,再向上平移4个单位 D.先向右平移3个单位,再向下平移4个单位11.用一块长40cm,宽28cm的矩形铁皮,在四个角截去四个全等的正方形后,折成一个无盖的长方形盒子,若折成的长方体的底面积为,设小正方形的边长为xcm,则列方程得()A.(20﹣x)(14﹣x)=360 B.(40﹣2x)(28﹣2x)=360C.40×28﹣4x2=360 D.(40﹣x)(28﹣x)=36012.中,,,,则的值是()A. B. C. D.二、填空题(每题4分,共24分)13.有三张除颜色外,大小、形状完全相同的卡片,第一张卡片两面都是红色,第二张卡片两面都是白色,第三张卡片一面是红色,一面是白色,用三只杯子分别把它们遮盖住,若任意移开其中的一只杯子,则看到的这张卡片两面都是红色的概率是__________.14.进价为元/件的商品,当售价为元/件时,每天可销售件,售价每涨元,每天少销售件,当售价为________元时每天销售该商品获得利润最大,最大利润是________元.15.如图,在中,,,,则的长为__________.16.如图,平行四边形中,,如果,则___________.17.已知反比例函数y=的图象位于第一、第三象限,则k的取值范围是_____.18.二次函数y=x2-2x+1的对称轴方程是x=_______.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,点O为坐标原点,A点的坐标为(3,0),以OA为边作等边三角形OAB,点B在第一象限,过点B作AB的垂线交x轴于点C.动点P从O点出发沿着OC向点C运动,动点Q从B点出发沿着BA向点A运动,P,Q两点同时出发,速度均为1个单位/秒.当其中一个点到达终点时,另一个点也随之停止.设运动时间为t秒.(1)求线段BC的长;(2)过点Q作x轴垂线,垂足为H,问t为何值时,以P、Q、H为顶点的三角形与△ABC相似;(3)连接PQ交线段OB于点E,过点E作x轴的平行线交线段BC于点F.设线段EF的长为m,求m与t之间的函数关系式,并直接写出自变量t的取值范围.20.(8分)如图,在平面直角坐标系中,四边形OABC的顶点坐标分别为O(0,0),A(6,0),B(4,3),C(0,3).动点P从点O出发,以每秒个单位长度的速度沿边OA向终点A运动;动点Q从点B同时出发,以每秒1个单位长度的速度沿边BC向终点C运动.设运动的时间为t秒,PQ2=y.(1)直接写出y关于t的函数解析式及t的取值范围:;(2)当PQ=时,求t的值;(3)连接OB交PQ于点D,若双曲线(k≠0)经过点D,问k的值是否变化?若不变化,请求出k的值;若变化,请说明理由.21.(8分)某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y=﹣x+1.(1)求这种产品第一年的利润W1(万元)与售价x(元/件)满足的函数关系式;(2)该产品第一年的利润为20万元,那么该产品第一年的售价是多少?(3)第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润W2至少为多少万元.22.(10分)某体育看台侧面的示意图如图所示,观众区的坡度为,顶端离水平地面的高度为,从顶棚的处看处的仰角,竖直的立杆上、两点间的距离为,处到观众区底端处的水平距离为.求:(1)观众区的水平宽度;(2)顶棚的处离地面的高度.(,,结果精确到)23.(10分)综合与探究:如图,已知抛物线与x轴相交于A、B两点,与y轴交于点C,连接BC,点P为线段BC上一动点,过点P作BC的垂线交抛物线于点Q,请解答下列问题:(1)求抛物线与x轴的交点A和B的坐标及顶点坐标(2)求线段PQ长度的最大值,并直接写出及此时点P的坐标.24.(10分)如图,在边长为1的正方形组成的网格中,的顶点均在格点上,点,的坐标分别是,,绕点逆时针旋转后得到.(1)画出,直接写出点,的坐标;(2)求在旋转过程中,点经过的路径的长;(3)求在旋转过程中,线段所扫过的面积.25.(12分)如图,在中,过半径OD中点C作AB⊥OD交O于A,B两点,且.(1)求OD的长;(2)计算阴影部分的面积.26.如图,已知反比例函数的图像与一次函数的图像交于A(-1,),B在(,-3)两点.(1)求的值;(2)直接写出使一次函数值大于反比例函数值时x的取值范围.

参考答案一、选择题(每题4分,共48分)1、D【分析】先求出时钟上的分针匀速旋转一分钟时的度数为6°,再求10分钟分针旋转的度数就简单了.【详解】解:∵时钟上的分针匀速旋转一周的度数为360°,时钟上的分针匀速旋转一周需要60分钟,则时钟上的分针匀速旋转一分钟时的度数为:360÷60=6°,那么10分钟,分针旋转了10×6°=60°,故选:D.【点睛】本题考查了生活中的旋转现象,明确分针旋转一周,分针旋转了360°,所以时钟上的分针匀速旋转一分钟时的度数,是解答本题的关键.2、A【分析】先找出圆心到y轴的距离,再与圆的半径进行比较,若圆心到y轴的距离小于半径,则圆与y轴相交,反之相离,若二者相等则相切故答案为A选项【详解】根据题意,我们得到圆心与y轴距离为3,小于其半径4,所以与y轴的关系为相交【点睛】本题主要考查了圆与直线的位置关系,熟练掌握圆心距与圆到直线距离的大小关系对应的位置关系是关键3、D【分析】根据二次函数的顶点式即可直接得出顶点坐标.【详解】∵二次函数∴该函数图象的顶点坐标为(﹣4,﹣5),故选:D.【点睛】本题考查二次函数的顶点坐标,解题的关键是掌握二次函数顶点式的顶点坐标为(h,k).4、D【解析】分m≤0、m≥1和0≤m≤1三种情况,根据y的最大值为4,结合二次函数的性质求解可得.【详解】y=﹣x2+2mx=﹣(x﹣m)2+m2(m为常数),①若m≤0,当x=0时,y=﹣(0﹣m)2+m2=4,m不存在,②若m≥1,当x=1时,y=﹣(1﹣m)2+m2=4,解得:m=2.5;③若0≤m≤1,当x=m时,y=m2=4,即:m2=4,解得:m=2或m=﹣2,∵0≤m≤1,∴m=﹣2或2都舍去,故选:D.【点睛】此题主要考查二次函数的图像与性质,解题的关键是根据题意分三种情况讨论.5、D【分析】把∠A置于直角三角形中,进而求得对边与斜边之比即可.【详解】解:如图所示,在Rt△ACD中,AD=4,CD=3,∴AC===5∴==.故选D.【点睛】本题考查了锐角三角函数的定义;合理构造直角三角形是解题关键.6、B【解析】因为旋转后得到△AMN与△ABC相似,则∠AMN=∠C=40°,因为旋转前∠AMN=80°,所以旋转角度为40°,故选B.7、C【分析】根据分式的运算法则即可求出答案.【详解】解:+=,÷==x,故选:C.【点睛】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.8、A【分析】先可判定a<0,可知=,=,可得∴a=6b,a=-6c,不妨设c=1,进而求出解析式,找出符合要求的答案即可.【详解】解:∵函数,当时,<x<,,∴可判定a<0,可知=+=,=×=∴a=6b,a=-6c,则b=-c,不妨设c=1,则函数为函数,即y=(x-2)(x+3),∴可判断函数的图像与x轴的交点坐标是(2,0),(-3,0),∴A选项是正确的.故选A.【点睛】本题考查抛物线和x轴交点的问题以及二次函数与系数关系,灵活掌握二次函数的性质是解决问题的关键.9、C【解析】由题意得:2a2-a-3=0,所以2a2-a=3,所以6a2-3a=3(2a2-a)=3×3=9,故选C.10、A【分析】抛物线的平移问题,实质上是顶点的平移,原抛物线的顶点为(0,0),平移后的抛物线顶点为(-3,1),由顶点的平移规律确定抛物线的平移规律.【详解】抛物线y=2x2的顶点坐标为(0,0),抛物线y=2(x+3)2+1的顶点坐标为(-3,1),点(0,0)需要先向左平移3个单位,再向上平移1个单位得到点(-3,1).∴抛物线y=2x2先向左平移3个单位,再向上平移1个单位得到抛物线y=2(x+3)2+1.故选A.【点睛】在寻找图形的平移规律时,往往需要把图形的平移规律理解为某个特殊点的平移规律.11、B【分析】由题意设剪掉的正方形的边长为xcm,根据长方体的底面积为列出方程即可.【详解】解:设剪掉的正方形的边长为xcm,则(28﹣2x)(40﹣2x)=1.故选:B.【点睛】本题考查一元二次方程的应用,解答本题的关键是仔细审题并建立方程.12、D【分析】根据勾股定理求出BC的长度,再根据cos函数的定义求解,即可得出答案.【详解】∵AC=,AB=4,∠C=90°∴∴故答案选择D.【点睛】本题考查的是勾股定理和三角函数,比较简单,需要熟练掌握sin函数、cos函数和tan函数分别代表的意思.二、填空题(每题4分,共24分)13、【分析】根据概率的相关性质,可知两面都是红色的概率=两面都是红色的张数/总张数.【详解】P(两面都是红色)=.【点睛】本题主要考察了概率的相关性质.14、55,3.【解析】试题分析:设售价为元,总利润为元,则,∴时,获得最大利润为3元.故答案为55,3.考点:3.二次函数的性质;3.二次函数的应用.15、6【分析】根据相似三角形的性质即可得出答案.【详解】∵DE∥BC∴∠ADE=∠ABC,∠AED=∠ACB∴△ADE∽△ABC∴∵∴又∴BC=6故答案为6.【点睛】本题考查的是相似三角形,比较简单,容易把三角形的相似比看成,这一点尤其需要注意.16、【分析】由平行四边形的性质可知△AEF∽△CDF,再利用条件可求得相似比,利用面积比等于相似比的平方可求得△CDF的面积.【详解】∵四边形ABCD为平行四边形,∴AB∥CD,∴∠EAF=∠DCF,且∠AFE=∠CFD,∴△AEF∽△CDF,∵AE:EB=1:2∴,∴,∵,∴S△CDF=.故答案为:.【点睛】本题主要考查相似三角形的判定和性质,掌握相似三角形的周长比等于相似比、面积比等于相似比的平方是解题的关键.17、.【解析】分析:根据“反比例函数的图象所处象限与的关系”进行解答即可.详解:∵反比例函数的图象在第一、三象限内,∴,解得:.故答案为.点睛:熟记“反比例函数的图象所处象限与的关系:(1)当时,反比例函数的图象在第一、三象限;(2)当时,反比例函数的图象在第二、四象限.”是正确解答本题的关键.18、1【分析】利用公式法可求二次函数y=x2-2x+1的对称轴.也可用配方法.【详解】∵-=-=1,∴x=1.故答案为1【点睛】本题考查二次函数基本性质中的对称轴公式;也可用配方法解决.三、解答题(共78分)19、(2);(2)t=2或2;(3)().【分析】(2)由等边三角形OAB得出∠ABC=92°,进而得出CO=OB=AB=OA=3,AC=6,求出BC即可;(2)需要分类讨论:△PHQ∽△ABC和△QHP∽△ABC两种情况;(3)过点Q作QN∥OB交x轴于点N,得出△AQN为等边三角形,由OE∥QN,得出△POE∽△PNQ,以及,表示出OE的长,利用m=BE=OB﹣OE求出即可.【详解】(2)如图l,∵△AOB为等边三角形,∴∠BAC=∠AOB=62,∵BC⊥AB,∴∠ABC=92°,∴∠ACB=32°,∠OBC=32°,∴∠ACB=∠OBC,∴CO=OB=AB=OA=3,∴AC=6,∴BC=AC=;(2)如图2,过点Q作x轴垂线,垂足为H,则QH=AQ•sin62°=.需要分类讨论:当△PHQ∽△ABC时,,即:,解得,t=2.同理,当△QHP∽△ABC时,t=2.综上所述,t=2或t=2;(3)如图2,过点Q作QN∥OB交x轴于点N,∴∠QNA=∠BOA=62°=∠QAN,∴QN=QA,∴△AQN为等边三角形,∴NQ=NA=AQ=3﹣t,∴ON=3﹣(3﹣t)=t,∴PN=t+t=2t,∴OE∥QN,∴△POE∽△PNQ,∴,∴,∴,∵EF∥x轴,∴∠BFE=∠BCO=∠FBE=32°,∴EF=BE,∴m=BE=OB﹣OE=(2<t<3).考点:相似形综合题.20、(1)(0≤t≤4);(2)t1=2,t2=;(2)经过点D的双曲线(k≠0)的k值不变,为.【分析】(1)过点P作PE⊥BC于点E,由点P,Q的出发点、速度及方向可找出当运动时间为t秒时点P,Q的坐标,进而可得出PE,EQ的长,再利用勾股定理即可求出y关于t的函数解析式(由时间=路程÷速度可得出t的取值范围);

(2)将PQ=代入(1)的结论中可得出关于t的一元二次方程,解之即可得出结论;

(2)连接OB,交PQ于点D,过点D作DF⊥OA于点F,求得点D的坐标,再利用反比例函数图象上点的坐标特征即可求出k值,此题得解.【详解】解:(1)过点P作PE⊥BC于点E,如图1所示.

当运动时间为t秒时(0≤t≤4)时,点P的坐标为(t,0),点Q的坐标为(4-t,2),

∴PE=2,EQ=|4-t-t|=|4-t|,

∴PQ2=PE2+EQ2=22+|4-t|2=t2-20t+21,

∴y关于t的函数解析式及t的取值范围:y=t2−20t+21(0≤t≤4);

故答案为:y=t2−20t+21(0≤t≤4).

(2)当PQ=时,t2−20t+21=()2

整理,得1t2-16t+12=0,

解得:t1=2,t2=.

(2)经过点D的双曲线y=(k≠0)的k值不变.

连接OB,交PQ于点D,过点D作DF⊥OA于点F,如图2所示.

∵OC=2,BC=4,

∴OB==1.

∵BQ∥OP,

∴△BDQ∽△ODP,

∴,

∴OD=2.

∵CB∥OA,

∴∠DOF=∠OBC.

在Rt△OBC中,sin∠OBC=,cos∠OBC==,

∴OF=OD•cos∠OBC=2×=,DF=OD•sin∠OBC=2×=,

∴点D的坐标为(,),

∴经过点D的双曲线y=(k≠0)的k值为×=..【点睛】此题考查勾股定理、解直角三角形、解一元二次方程、相似三角形的判定与性质、平行线的性质以及反比例函数图象上点的坐标特征,解题的关键是:(1)利用勾股定理,找出y关于t的函数解析式;(2)通过解一元二次方程,求出当PQ=时t的值;(2)利用相似三角形的性质及解直角三角形,找出点D的坐标.21、(1)W1=﹣x2+32x﹣2;(2)该产品第一年的售价是16元;(3)该公司第二年的利润W2至少为18万元.【解析】(1)根据总利润=每件利润×销售量﹣投资成本,列出式子即可;(2)构建方程即可解决问题;(3)根据题意求出自变量的取值范围,再根据二次函数,利用而学会设的性质即可解决问题.【详解】(1)W1=(x﹣6)(﹣x+1)﹣80=﹣x2+32x﹣2.(2)由题意:20=﹣x2+32x﹣2.解得:x=16,答:该产品第一年的售价是16元.(3)由题意:7≤x≤16,W2=(x﹣5)(﹣x+1)﹣20=﹣x2+31x﹣150,∵7≤x≤16,∴x=7时,W2有最小值,最小值=18(万元),答:该公司第二年的利润W2至少为18万元.【点睛】本题考查二次函数的应用、一元二次方程的应用等知识,解题的关键是理解题意,学会构建方程或函数解决问题.22、(1)20;(2)顶棚的处离地面的高度约为.【分析】(1)根据坡度的概念计算;(2)作于,于,根据正切的定义求出,结合图形计算即可.【详解】(1)∵观众区的坡度为,顶端离水平地面的高度为,∴,答:观众区的水平宽度为;(2)如图,作于,于,则四边形、为矩形,∴,,,在中,,则,∴,答:顶棚的处离地面的高度约为.【点睛】本题考查解直角三角形的应用﹣仰角俯角问题、坡度坡角问题,掌握仰角俯角的概念、坡度的概念、熟记锐角三角函数的定义是解题的关键.23、(1)点A的坐标为(-2,0),点B的坐标为(1,0),顶点坐标为(1,).(2)PQ的最大值=,此时,点P的坐标为(1,3)【分析】(1)令y=0可求得x的值,可知点A、点B的坐标,运用配方法可求抛物线的顶点坐标;(2)先求出直线BC的表达式,再设点Q的坐标为(m,)则点E的坐标为(m,-m+1),得QE=-(-m+1)=,求出QE的最大值即可解决问题.【详解】(1)把y=0代入中得:解得:x1=-2,x2=1∴点A的坐标为(-2,0),点B的坐标为(1,0).∵∴抛物线W的顶点坐标为(1,).(2)过点Q作QF⊥x轴,垂足为F,交线段BC于点E.当x=0时,代入得:y=1,∴点C的坐标为(0,1),∵点B的坐标为(1,0).∴OC=OB=1,∴∠OBC=15°.设QC的表达式为y=kx+b,把C(0,1),B(1,0)代入解析式得,,解得,,∴直线BC的表达式为y=-x+1.∵QF⊥x轴,PQ⊥BC,∴∠PQE=15°.在Rt△PQE中,∠PQE=∠PEQ=15°,∴当QE最大时,PQ的长也最大.设点Q的坐标为(m,)则点E的坐标为(m,-m+1).∴QE=-(-m+1)=.∵a=-<0,∴QE有最大值为:当m=2时,QE最大值为2.∴PQ的最大值=QE·.此时,点P的坐

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论