2023-2024学年浙江省金华四中学数学九上期末教学质量检测模拟试题含解析_第1页
2023-2024学年浙江省金华四中学数学九上期末教学质量检测模拟试题含解析_第2页
2023-2024学年浙江省金华四中学数学九上期末教学质量检测模拟试题含解析_第3页
2023-2024学年浙江省金华四中学数学九上期末教学质量检测模拟试题含解析_第4页
2023-2024学年浙江省金华四中学数学九上期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年浙江省金华四中学数学九上期末教学质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.已知,是抛物线上两点,则正数()A.2 B.4 C.8 D.162.把二次函数y=﹣(x+1)2﹣3的图象沿着x轴翻折后,得到的二次函数有()A.最大值y=3 B.最大值y=﹣3 C.最小值y=3 D.最小值y=﹣33.某校数学课外小组,在坐标纸上为某湿地公园的一块空地设计植树方案如下:第k棵树种植在点Pk(xk,yk)处,其中x1=1,y1=1,且k≥2时,,[a]表示非负实数a的整数部分,例如[2.3]=2,,[1.5]=1.按此方案,第2119棵树种植点的坐标应为()A.(6,2121) B.(2119,5) C.(3,413) D.(414,4)4.已知抛物线经过点,,若,是关于的一元二次方程的两个根,且,,则下列结论一定正确的是()A. B. C. D.5.二次函数y=2x2﹣4x﹣6的最小值是()A.﹣8 B.﹣2 C.0 D.66.如图,点A、B、C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,∠ACD的度数为()A.10° B.15° C.20° D.30°7.在平面直角坐标系中,若干个半径为1的单位长度,圆心角为60°的扇形组成一条连续的曲线,点P从原点O出发,向右沿这条曲线做上下起伏运动(如图),点P在直线上运动的速度为每1个单位长度.点P在弧线上运动的速度为每秒个单位长度,则2019秒时,点P的坐标是()A. B.C. D.8.下列命题错误的是()A.经过三个点一定可以作圆B.经过切点且垂直于切线的直线必经过圆心C.同圆或等圆中,相等的圆心角所对的弧相等D.三角形的外心到三角形各顶点的距离相等9.如图,在△ABC中,点D、E分别在边AB、AC上,则在下列五个条件中:①∠AED=∠B;②DE∥BC;③=;④AD·BC=DE·AC;⑤∠ADE=∠C,能满足△ADE∽△ACB的条件有()A.1个 B.2 C.3个 D.4个10.在下列四个图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.11.如图,在平行四边形ABCD中,E是DC上的点,DE:EC=3:2,连接AE交BD于点F,则△DEF与△BAF的面积之比为()A.2:5 B.3:5 C.9:25 D.4:2512.在反比例函数的图象的每个象限内,y随x的增大而增大,则k值可以是()A.-1 B.1 C.2 D.3二、填空题(每题4分,共24分)13.数据3000,2998,3002,2999,3001的方差为__________.14.如图,在反比例函数的图象上任取一点P,过P点分别作x轴,y轴的垂线,垂足分别为M,N,那么四边形PMON的面积为_____.15.已知和是方程的两个实数根,则__________.16.一家鞋店对上一周某品牌女鞋的销量统计如下:尺码(厘米)2222.52323.52424.525销量(双)12511731该店决定本周进货时,多进一些尺码为23.5厘米的鞋,影响鞋店决策的统计量是___________.17.经过某十字路口的汽车,它可能直行,也可能向左转或向右转,假设这三种可能性大小相同,那么两辆汽车经过这个十字路口,一辆向左转,一辆向右转的概率是_____.18.如图,已知中,,,,将绕点顺时针旋转得到,点、分别为、的中点,若点刚好落在边上,则______.三、解答题(共78分)19.(8分)(1)计算:sin230°+cos245°(2)解方程:x(x+1)=320.(8分)某网店打出促销广告:最潮新款服装30件,每件售价300元,若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买2件,所买的每件服装的售价均降低6元.已知该服装成本是每件200元.设顾客一次性购买服装x件时,该网店从中获利y元.(1)求y与x的函数关系式,并写出自变量x的取值范围.(2)顾客一次性购买多少件时,该网店从中获利最多,并求出获利的最大值?21.(8分)已知关于的一元二次方程

有实根.(1)求的取值范围;(2)求该方程的根.22.(10分)如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD交AC于点E,点O是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.(1)判断直线AC与⊙O的位置关系,并说明理由;(2)当BD=6,AB=10时,求⊙O的半径.23.(10分)如图,AB为⊙O的直径,弦CD⊥AB,垂足为点E,CF⊥AF,且CF=CE(1)求证:CF是⊙O的切线;(2)若sin∠BAC=,求的值.24.(10分)已知AB是⊙O的直径,C是圆上的点,D是优弧ABC的中点.(1)若∠AOC=100°,则∠D的度数为,∠A的度数为;(2)求证:∠ADC=2∠DAB.25.(12分)如图1,为等腰三角形,是底边的中点,腰与相切于点,底交于点,.(1)求证:是的切线;(2)如图2,连接,交于点,点是弧的中点,若,,求的半径.26.某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本(单位:元)、销售价(单位:元)与产量x(单位:kg)之间的函数关系.(1)请解释图中点D的横坐标、纵坐标的实际意义;(2)求线段AB所表示的与x之间的函数表达式;(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?

参考答案一、选择题(每题4分,共48分)1、C【分析】根据二次函数的对称性可得,代入二次函数解析式即可求解.【详解】解:∵,是抛物线上两点,∴,∴且n为正数,解得,故选:C.【点睛】本题考查二次函数的性质,掌握二次函数的性质是解题的关键.2、C【分析】根据二次函数图象与几何变换,将y换成-y,整理后即可得出翻折后的解析式,根据二次函数的性质即可求得结论.【详解】把二次函数y=﹣(x+1)2﹣3的图象沿着x轴翻折后得到的抛物线的解析式为﹣y=﹣(x+1)2﹣3,整理得:y=(x+1)2+3,所以,当x=﹣1时,有最小值3,故选:C.【点睛】本题考查了二次函数图象与几何变换,求得翻折后抛物线解析式是解题的关键.3、D【分析】根据已知分别求出1≤k≤5时,P点坐标为(1,1)、(1,2)、(1,3)、(1,4)、(1,5),当6≤k≤11时,P点坐标为(2,1)、(2,2)、(2,3)、(2,4)、(2,5),通过观察得到点的坐标特点,进而求解.【详解】解:由题可知1≤k≤5时,P点坐标为(1,1)、(1,2)、(1,3)、(1,4)、(1,5),当6≤k≤11时,P点坐标为(2,1)、(2,2)、(2,3)、(2,4)、(2,5),……通过以上数据可得,P点的纵坐标5个一组循环,∵2119÷5=413…4,∴当k=2119时,P点的纵坐标是4,横坐标是413+1=414,∴P(414,4),故选:D.【点睛】本题考查点的坐标和探索规律;能够理解题意,通过已知条件探索点的坐标循环规律是解题的关键.4、C【分析】根据a的符号分类讨论,分别画出对应的图象,然后通过图象判断m和n的符号,找到这两种情况下都正确的结论即可.【详解】解:当a>0时,如下图所示,由图可知:当<<时,y<0;当<或>时,y>0∵<0<∴m>0,n<0,此时:不能确定其符号,故A不一定成立;,故B错误;,故C正确;,故D错误.当a<0时,如下图所示,由图可知:当<<时,y>0;当<或>时,y<0∵<0<∴m<0,n>0,此时:不能确定其符号,故A不一定成立;,故B正确;,故C正确;,故D错误.综上所述:结论一定正确的是C.故选C.【点睛】此题考查的是二次函数的图象及性质,掌握二次函数的图象及性质与二次项系数的关系、分类讨论的数学思想和数形结合的数学思想是解决此题的关键.5、A【分析】将函数的解析式化成顶点式,再根据二次函数的图象与性质即可得.【详解】因此,二次函数的图象特点为:开口向上,当时,y随x的增大而减小;当时,y随x的增大而增大则当时,二次函数取得最小值,最小值为.故选:A.【点睛】本题考查了二次函数的图象与性质,熟记函数的图象特征与性质是解题关键.6、C【分析】根据圆周角定理求得∠BOC=100°,进而根据三角形的外角的性质求得∠BDC=70°,然后根据外角求得∠ACD的度数.【详解】解:∵∠A=50°,

∴∠BOC=2∠A=100°,

∵∠B=30°,∠BOC=∠B+∠BDC,

∴∠BDC=∠BOC-∠B=100°-30°=70°,∴∠ACD=70°50°=20°;故选:C.【点睛】本题考查了圆心角和圆周角的关系及三角形外角的性质,圆心角和圆周角的关系是解题的关键.7、B【分析】设第n秒运动到Pn(n为自然数)点,根据点P的运动规律找出部分Pn点的坐标,根据坐标的变化找出变化规律“P4n+1(,),P4n+2(n+1,0),P4n+3(,﹣),P4n+4(2n+2,0)”,依此规律即可得出结论.【详解】解:设第n秒运动到Pn(n为自然数)点,观察,发现规律:P1(,),P2(1,0),P3(,﹣),P4(2,0),P5(,),…,∴P4n+1(,),P4n+2(n+1,0),P4n+3(,﹣),P4n+4(2n+2,0).∵2019=4×504+3,∴P2019为(,﹣),故答案为B.【点睛】本题考查了规律型中的点的坐标,解题的关键是找出变化规律并根据规律找出点的坐标.8、A【解析】选项A,经过不在同一直线上的三个点可以作圆;选项B,经过切点且垂直于切线的直线必经过圆心,正确;选项C,同圆或等圆中,相等的圆心角所对的弧相等,正确;选项D,三角形的外心到三角形各顶点的距离相等,正确;故选A.9、D【分析】根据相似三角形的判定定理判断即可.【详解】解:①由∠AED=∠B,∠A=∠A,则可判断△ADE∽△ACB;②DE∥BC,则有∠AED=∠C,∠ADE=∠B,则可判断△ADE∽△ACB;③=,∠A=∠A,则可判断△ADE∽△ACB;④AD·BC=DE·AC,可化为,此时不确定∠ADE=∠ACB,故不能确定△ADE∽△ACB;⑤由∠ADE=∠C,∠A=∠A,则可判断△ADE∽△ACB;所以能满足△ADE∽△ACB的条件是:①②③⑤,共4个,故选:D.【点睛】此题考查了相似三角形的判定,关键是掌握相似三角形的三种判定定理.10、A【解析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是中心对称图形,也是轴对称图形,符合题意;B、是轴对称图形,不是中心对称图形,不符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、不是轴对称图形,是中心对称图形,不符合题意.故选A.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.11、C【分析】由平行四边形的性质得出CD∥AB,进而得出△DEF∽△BAF,再利用相似三角形的性质可得出结果.【详解】∵四边形ABCD为平行四边形,∴CD∥AB,∴△DEF∽△BAF.∵DE:EC=3:2,∴,∴.故选C.【点睛】本题考查了相似三角形的性质与判定及平行四边形的性质,解题的关键是掌握相似三角形的面积比等于相似比的平方.12、A【解析】因为的图象,在每个象限内,y的值随x值的增大而增大,所以k−1<0,即k<1.故选A.二、填空题(每题4分,共24分)13、2【分析】先根据平均数的计算公式求出平均数,再根据方差公式计算即可.【详解】数据3000,2998,3002,2999,3001的平均数是:,方差是:,故答案为:【点睛】本题考查了方差的定义,熟记方差的计算顺序:先差、再方、再平均.14、1【分析】设出点P的坐标,四边形PMON的面积等于点P的横纵坐标的积的绝对值,把相关数值代入即可.【详解】设点P的坐标为(x,y),∵点P的反比例函数的图象上,∴xy=﹣1,作轴于,作轴于,∴四边形PMON为矩形,∴四边形PMON的面积为|xy|=1,故答案为1.【点睛】考查反比例函数的比例系数的意义;用到的知识点为:在反比例函数图象上的点的横纵坐标的积等于反比例函数的比例系数.注意面积应为正值.15、1【分析】根据根与系数的关系可得出x1+x2=-3、x1x2=-1,将其代入x12+x22=(x1+x2)2-2x1x2中即可求出结论.【详解】解:∵x1,x2是方程的两个实数根,

∴x1+x2=-3,x1x2=-1,

∴x12+x22=(x1+x2)2-2x1x2=(-3)2-2×(-1)=1.

故答案为:1.【点睛】本题考查了一元二次方程的根与系数的关系,牢记两根之和等于-、两根之积等于是解题的关键.16、众数【解析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【详解】由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.故答案为众数.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.熟练掌握均数、中位数、众数、方差的意义是解答本题的关键.17、【分析】列举出所有情况,让一辆向左转,一辆向右转的情况数除以总情况数即为所求的可能性.【详解】一辆向左转,一辆向右转的情况有两种,则概率是.【点睛】本题考查了列表法与树状图法,用到的知识点为:可能性=所求情况数与总情况数之比.18、【分析】根据旋转性质及直角三角形斜边中线等于斜边一半,求出CD=CE=5,再根据勾股定理求DE长,的值即为等腰△CDE底角的正弦值,根据等腰三角形三线合一构建直角三角形求解.【详解】如图,过D点作DM⊥BC,垂足为M,过C作CN⊥DE,垂足为N,在Rt△ACB中,AC=8,BC=6,由勾股定理得,AB=10,∵D为AB的中点,∴CD=,由旋转可得,∠MCN=90°,MN=10,∵E为MN的中点,∴CE=,∵DM⊥BC,DC=DB,∴CM=BM=,∴EM=CE-CM=5-3=2,∵DM=,∴由勾股定理得,DE=,∵CD=CE=5,CN⊥DE,∴DN=EN=,∴由勾股定理得,CN=,∴sin∠DEC=.故答案为:.【点睛】本题考查旋转性质,直角三角形的性质和等腰三角形的性质,能够用等腰三角形三线合一的性质构建直角三角形解决问题是解答此题的关键.三、解答题(共78分)19、(1);(2)x1=,x2=.【分析】(1)sin30°=,cos45°=,sin230°+cos245°=()2+()2=(2)用公式法:化简得,a=1,b=1,c=-3,b-4ac=13,∴x=.【详解】解:(1)原式=()2+()2=;(2)x(x+1)=3,x2+x﹣3=0,∵a=1,b=1,c=﹣3,b﹣4ac=1﹣4×1×(﹣3)=13,∴x==,∴x1=,x2=.【点睛】本题的考点是三角函数的计算和解一元二次方程.方法是熟记特殊三角形的三角函数及几种常用的解一元二次方程的方法.20、(1)y=100x(的整数)y=x(的整数);(2)购买22件时,该网站获利最多,最多为1408元.【分析】(1)根据题意可得出销售量乘以每台利润进而得出总利润;(2)根据一次函数和二次函数的性质求得最大利润.【详解】(1)当的整数时,y与x的关系式为y=100x;当的整数时,,y=(的整数),∴y与x的关系式为:y=100x(的整数),y=x(的整数)(2)当(的整数),y=100x,当x=10时,利润有最大值y=1000元;当10˂x≤30时,y=,∵a=-3<0,抛物线开口向下,∴y有最大值,当x=时,y取最大值,因为x为整数,根据对称性得:当x=22时,y有最大值=1408元˃1000元,所以顾客一次性购买22件时,该网站获利最多.【点睛】本题考查分段函数及一次函数和二次函数的性质,利用函数性质求最值是解答此题的重要途径,自变量x的取值范围及取值要求是解答此题的关键之处.21、(1);(2)【分析】(1)根据根的判别式,列不等式求出k的取值范围即可.(2)用公式法解方程即可.【详解】(1)由一元二次方程有实数根,可以得出≥1,即(-2)2-4(k+1)≥1,解得:k≤1.(2),x==.【点睛】本题主要考查根的判别式以及公式法解一元二次方程的方法,熟记根的判别式以及一元二次方程解得公式是解题关键.22、(1)(1)AC与⊙O相切,证明见解析;(2)⊙O半径是.【解析】试题分析:(1)连结OE,如图,由BE平分∠ABD得到∠OBE=∠DBO,加上∠OBE=∠OEB,则∠OBE=∠DBO,于是可判断OE∥BD,再利用等腰三角形的性质得到BD⊥AC,所以OE⊥AC,于是根据切线的判定定理可得AC与⊙O相切;(2)设⊙O半径为r,则AO=10﹣r,证明△AOE∽△ABD,利用相似比得到,然后解方程求出r即可.试题解析:(1)AC与⊙O相切.理由如下:连结OE,如图,∵BE平分∠ABD,∴∠OBE=∠DBO,∵OE=OB,∴∠OBE=∠OEB,∴∠OBE=∠DBO,∴OE∥BD,∵AB=BC,D是AC中点,∴BD⊥AC,∴OE⊥AC,∴AC与⊙O相切;(2)设⊙O半径为r,则AO=10﹣r,由(1)知,OE∥BD,∴△AOE∽△ABD,∴,即,∴r=,即⊙O半径是.考点:圆切线的判定:相似经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.解决(2)小题的关键是利用相似比构建方程.23、(1)见解析(2)【分析】(1)首先连接OC,由CD⊥AB,CF⊥AF,CF=CE,即可判定AC平分∠BAF,由圆周角定理即可得∠BOC=2∠BAC,则可证得∠BOC=∠BAF,即可判定OC∥AF,即可证得CF是⊙O的切线.(2)由垂径定理可得CE=DE,即可得S△CBD=2S△CEB,由△ABC∽△CBE,根据相似三角形的面积比等于相似比的平方,易求得△CBE与△ABC的面积比,从而可求得的值.【详解】(1)证明:连接OC.∵CE⊥AB,CF⊥AF,CE=CF,∴AC平分∠BAF,即∠BAF=2∠BAC.∵∠BOC=2∠BAC,∴∠BOC=∠BAF.∴OC∥AF.∴CF⊥OC.∴CF是⊙O的切线.(2)解:∵AB是⊙O的直径,CD⊥AB,∴CE=ED,∠ACB=∠BEC=90°.∴S△CBD=2S△CEB,∠BAC=∠BCE.∴△ABC∽△CBE.∴.∴.24、(1)50°,25°;(2)见解析【分析】(1)连接OD.证明△AOD≌△COD即可解决问题.(2)利用全等三角形的性质,等腰三角形的性质解决问题即可.【详解】(1)解:连接OD.∵,∴AD=CD,∵OD=OD,OA=OC,∴△AOD≌△COD(SSS),∴∠A=∠C,∵∠A=∠ODA,∠C=∠ODC,∴∠A=∠C=∠ADO=∠CDO,∵∠ADC=∠AOC=50°,∴∠A=∠ADO=∠ADC=25°,故答案为50°,25°.(2)证明:∵△AOD≌△COD(SSS),∴∠A=∠C,∵∠A=∠ODA,∠C=∠ODC,∴∠A=∠C=∠ADO=∠CDO,∴∠ADC=2∠DAB.【点睛】本题考查的是圆的综合,难度中等,运用到了圆中的基本性质以及全等三角形的相关知识需要熟练掌握.25、(1)证明见解析;(2)的半径为2.1.【分析】(1)连接,,过作于点,根据三线合一可得,然后根据角平分线的性质可得,然后根据切线的判定定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论