版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年四川省南充市阆中学市数学九年级第一学期期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知下列命题:①对角线互相平分的四边形是平行四边形;②内错角相等;③对角线互相垂直的四边形是菱形;④矩形的对角线相等,其中假命题有()A.个 B.个 C.个 D.个2.在一个不透明的口袋中,装有若干个红球和9个黄球,它们只有颜色不同,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率是0.3,则估计口袋中大约有红球()A.21个 B.14个 C.20个 D.30个3.若点,在反比例函数上,则的大小关系是()A. B. C. D.4.要使二次根式有意义,则的取值范围是()A. B.且 C. D.且5.如图,和都是等腰直角三角形,,,的顶点在的斜边上,、交于,若,,则的长为()A. B. C. D.6.如图,在中..是的角平分线.若在边上截取,连接,则图中等腰三角形共有()A.3个 B.5个 C.6个 D.2个7.如图,已知Rt△ABC中,∠C=90°,BC=3,AC=4,则sinA的值为().A. B.C. D.8.已知:如图,某学生想利用标杆测量一棵大树的高度,如果标杆EC的高为1.6m,并测得BC=2.2m,CA=0.8m,那么树DB的高度是()A.6m B.5.6m C.5.4m D.4.4m9.△ABC中,∠C=Rt∠,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB、BC分别交于点E、D,则AE的长为()A. B. C. D.10.在﹣3、﹣2、﹣1、0、1、2这六个数中,任取两个数,恰好和为﹣1的概率为()A. B. C. D.11.如图,D,E分别是△ABC的边AB,AC上的中点,CD与BE交于点O,则S△DOE:S△BOC的值为()A. B. C. D.12.帅帅收集了南街米粉店今年6月1日至6月5日每天的用水量(单位:吨),整理并绘制成如下折线统计图.下列结论正确的是()A.极差是6 B.众数是7 C.中位数是5 D.方差是8二、填空题(每题4分,共24分)13.反比例函数()的图象经过点A,B(1,y1),C(3,y1),则y1_______y1.(填“<,=,>”)14.用配方法解方程时,可配方为,其中________.15.在平面直角坐标系中,点(4,-5)关于原点的对称点的坐标是________.16.如图所示,四边形ABCD是边长为3的正方形,点E在BC上,BE=1,△ABE绕点A逆时针旋转后得到△ADF,则FE的长等于____________.17.如果,那么______(用向量、表示向量).18.二次函数的最小值是.三、解答题(共78分)19.(8分)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地、颜色等其它方面完全相同,若背面朝上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面朝上方在桌面上,甲从中随机抽取一张卡片,记该卡片上的数字为,然后放回洗匀,背面朝上方在桌面上,再由乙从中随机抽取一张卡片,记该卡片上的数字为,组成一数对.(1)请写出.所有可能出现的结果;(2)甲、乙两人玩游戏,规则如下:按上述要求,两人各抽依次卡片,卡片上述资质和为奇数则甲赢,数字之和为偶数则乙赢,你认为这个游戏公平吗?请说明理由.20.(8分)对于二次函数y=x2﹣3x+2和一次函数y=﹣2x+4,把y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图象记作抛物线L.现有点A(2,0)和抛物线L上的点B(﹣1,n),请完成下列任务:(尝试)(1)当t=2时,抛物线y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)的顶点坐标为;(2)判断点A是否在抛物线L上;(3)求n的值;(发现)通过(2)和(3)的演算可知,对于t取任何不为零的实数,抛物线L总过定点,坐标为.(应用)二次函数y=﹣3x2+5x+2是二次函数y=x2﹣3x+2和一次函数y=﹣2x+4的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由.21.(8分)如图,△ABC是等腰三角形,且AC=BC,∠ACB=120°,在AB上取一点O,使OB=OC,以点O为圆心,OB为半径作圆,过点C作CD∥AB交⊙O于点D,连接BD(1)猜想AC与⊙O的位置关系,并证明你的猜想;(2)试判断四边形BOCD的形状,并证明你的判断;(3)已知AC=6,求扇形OBC所围成的圆锥的底面圆的半径r.22.(10分)有5张不透明的卡片,除正面上的图案不同外,其它均相同.将这5张卡片背面向上洗匀后放在桌面上.若从中随机抽取1张卡片后不放回,再随机抽取1张,请用画树状图或列表的方法,求两次所抽取的卡片恰好都是轴对称图形的概率.23.(10分)某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系:y=ax2+bx-1.其图象如图所示.⑴a=;b=;⑵销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?⑶由图象可知,销售单价x在时,该种商品每天的销售利润不低于16元?24.(10分)如图,在△ABC中,∠B=30°,∠C=45°,AC=2,求AB和BC.25.(12分)如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)求证:四边形BDFG为菱形;(2)若AG=13,CF=6,求四边形BDFG的周长.26.某学校举行冬季“趣味体育运动会”,在一个箱内装入只有标号不同的三颗实心球,标号分别为1,2,3.每次随机取出一颗实心球,记下标号作为得分,再将实心球放回箱内。小明从箱内取球两次,若两次得分的总分不小于5分,请用画树状图或列表的方法,求发生“两次取球得分的总分不小于5分”情况的概率.
参考答案一、选择题(每题4分,共48分)1、B【分析】利用平行四边形的判定、平行线的性质、菱形的判定和矩形的性质分别对各命题进行判断即可.【详解】解:①根据平行四边形的判定定理可知,对角线互相平分的四边形是平行四边形,故①是真命题;②两直线平行,内错角相等,故②为假命题;③根据菱形的判定定理,对角线互相垂直且平分的四边形是菱形,故③是假命题;④根据矩形的性质,矩形的对角线相等,故④是真命题;故选:B.【点睛】本题考查了命题与定理的知识,解题的关键是熟悉平行四边形的判定、平行线的性质、菱形的判定及矩形的性质,难度不大.2、A【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】由题意可得:解得:x=21,经检验,x=21是原方程的解故红球约有21个,故选:A.【点睛】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.3、A【分析】由k<0可得反比例函数的图象在二、四象限,y随x的增大而增大,可知y3<0,y1>0,y2>0,根据反比例函数的增减性即可得答案.【详解】∵k<0,∴反比例函数的图象在二、四象限,y随x的增大而增大,∴y3<0,y1>0,y2>0,∵-3<-1,∴y1<y2,∴,故选:A.【点睛】本题考查反比例函数的性质,对于反比例函数y=(k≠0),当k>0时,图象在一、三象限,在各象限,y随x的增大而减小;当k<0时,图象在二、四象限,在各象限内,y随x的增大而增大;熟练掌握反比例函数的性质是解题关键.4、D【分析】根据二次根式有意义:被开方数为非负数,分式有意义:分母不为零,可得出x的取值.【详解】解:要使二次根式有意义,则,且,故的取值范围是:且.故选:D.【点睛】此题考查了二次根式及分式有意义的条件,属于基础题,解答本题的关键是掌握:二次根式有意义:被开方数为非负数,分式有意义:分母不为零,难度一般.5、B【分析】连接BD,自F点分别作,交AD、BD于G、H点,通过证明,可得,根据勾股定理求出AB的长度,再根据角平分线的性质可得,根据三角形面积公式可得,代入中即可求出BF的值.【详解】如图,连接BD,自F点分别作,交AD、BD于G、H点∵和都是等腰直角三角形∴在△ECA和△DCB中在Rt△ADB中,∴DF是∠ADB的角平分线∵△ADF底边AF上的高h与△BDF底边BF上的高h相同故答案为:B.【点睛】本题考查了三角形的综合问题,掌握等腰直角三角形的性质、全等三角形的性质以及判定定理、勾股定理、角平分线的性质、三角形面积公式是解题的关键.6、B【分析】根据等腰三角形的判定及性质和三角形的内角和定理求出各角的度数,逐一判断即可.【详解】解:∵,∴∠ABC=∠ACB=72°,∠A=180°-∠ABC-∠ACB=36°,△ABC为等腰三角形∵是的角平分线∴∠ABD=∠CBD=∠ABC=36°∴∠BDC=180°-∠CBD-∠C=72°,∠ABD=∠A∴∠BDC=∠ACB,DA=DB,△DBC为等腰三角形∴BC=BD,△BCD为等腰三角形∵∴∠BED=∠BDE=(180°-∠ABD)=72°,△BEC为等腰三角形∴∠AED=180°-∠BED=108°∴∠EDA=180°-∠AED-∠A=36°∴∠EDA=∠A∴ED=EA,△EDA为等腰三角形共有5个等腰三角形故选B.【点睛】此题考查的是等腰三角形的判定及性质和三角形的内角和,掌握等边对等角、等角对等边和三角形的内角和定理是解决此题的关键.7、C【分析】根据勾股定理求出AB,并根据正弦公式:sinA=求解即可.【详解】∵∠C=90°,BC=3,AC=4∴∴故选C.【点睛】本题主要是正弦函数与勾股定理的简单应用,正确理解正弦求值公式即可.8、A【分析】先根据相似三角形的判定定理得出Rt△ACE∽Rt△ABD,再根据相似三角形的对应边成比例即可求出BD的长.【详解】解:∵EC∥AB,BD⊥AB,∴EC∥BD,∠ACE=∠ABD=90°,在Rt△ACE∽Rt△ABD中,∠A=∠A,∠ACE=∠ABD=90°,∴Rt△ACE∽Rt△ABD,∴,即,解得BD=6m.故选A.【点睛】本题考查的是相似三角形的应用,用到的知识点为:相似三角形的对应边成比例.9、C【分析】在Rt△ABC中,由勾股定理可直接求得AB的长;过C作CM⊥AB,交AB于点M,由垂径定理可得M为AE的中点,在Rt△ACM中,根据勾股定理得AM的长,从而得到AE的长.【详解】解:在Rt△ABC中,
∵AC=3,BC=4,
∴AB==1.
过C作CM⊥AB,交AB于点M,如图所示,
由垂径定理可得M为AE的中点,
∵S△ABC=AC•BC=AB•CM,且AC=3,BC=4,AB=1,
∴CM=,
在Rt△ACM中,根据勾股定理得:AC2=AM2+CM2,即9=AM2+()2,
解得:AM=,
∴AE=2AM=.
故选:C.【点睛】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.10、D【分析】画树状图展示所有15种等可能的结果数,找出恰好和为-1的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有15种等可能的结果数,其中恰好和为-1的结果数为3,所以任取两个数,恰好和为-1的概率=.故选:D.【点睛】本题考查的是概率的问题,能够用树状图解决简单概率问题是解题的关键.11、C【分析】DE为△ABC的中位线,则DE∥BC,DE=BC,再证明△ODE∽△OCB,由相似三角形的性质即可得到结论.【详解】解:∵点D、E分别为AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,DE=BC,∴∠ODE=∠OCB,∠OED=∠OBC,∴△ODE∽△OCB,∴,故选:C.【点睛】本题考查了相似三角形的判定与性质,三角形中位线定理,熟练掌握相似三角形的性质定理是解题的关键.12、D【分析】根据极差、众数、中位数及方差的定义,依次计算各选项即可作出判断.【详解】解:由图可知,6月1日至6月5日每天的用水量是:5,7,11,3,1.A.极差,结论错误,故A不符合题意;B.众数为5,7,11,3,1,结论错误,故B不符合题意;C.这5个数按从小到大的顺序排列为:3,5,7,1,11,中位数为7,结论错误,故C不符合题意;D.平均数是,方差.结论正确,故D符合题意.故选D.【点睛】本题考查了折线统计图,重点考查了极差、众数、中位数及方差的定义,根据图表准确获取信息是解题的关键.二、填空题(每题4分,共24分)13、>【分析】根据反比例函数的性质得出在每个象限内,y随x的增大而减小,图象在第一、三象限内,再比较即可.【详解】解:由图象经过点A,可知,反比例函数图象在第一、三象限内,y随x的增大而减小,由此可知y1>y1.【点睛】本题考查反比例函数的图象和性质,能熟记反比例函数的性质是解此题的关键.14、-6【分析】把方程左边配成完全平方,与比较即可.【详解】,,,可配方为,.故答案为:.【点睛】本题考查用配方法来解一元二次方程,熟练配方是解决此题的关键.15、(-4,5)【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】解:点(4,-5)关于原点的对称点的坐标是(-4,5),故答案为:(-4,5).【点睛】此题主要考查了关于原点对称的点的坐标特点,关键是掌握点的坐标的变化规律.16、2【分析】由题意可得EC=2,CF=4,根据勾股定理可求EF的长.【详解】∵四边形ABCD是正方形,∴AB=BC=CD=1.∵△ABE绕点A逆时针旋转后得到△ADF,∴DF=BE=1,∴CF=CD+DF=1+1=4,CE=BC﹣BE=1﹣1=2.在Rt△EFC中,EF.【点睛】本题考查旋转的性质,正方形的性质,勾股定理,熟练运用这些性质解决问题是本题的关键.17、【分析】将看作关于的方程,解方程即可.【详解】∵∴∴故答案为:【点睛】本题考查平面向量的知识,解题的关键是掌握平面向量的运算法则.18、﹣1.【解析】试题分析:∵=,∵a=1>0,∴x=﹣2时,y有最小值=﹣1.故答案为﹣1.考点:二次函数的最值.三、解答题(共78分)19、(1)见解析;(2)不公平,理由见解析【解析】(1)利用枚举法解决问题即可;(2)求出数字之和为奇数的概率,数字之和为偶数的概率即可判断.【详解】(1)由题设可知,所有可能出现的结果如下:,,,,,,,,共9种;(2)两人各抽一次卡片,卡片上数字之和为奇数有4种可能,所以(甲赢);卡片上数字之和为偶数有5种可能,所以(乙赢).∵,∴乙赢的可能性大一些,故这个游戏不公平.【点睛】本题考查游戏公平性,概率等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20、[尝试](1)(1,﹣2);(2)点A在抛物线L上;(3)n=1;[发现](2,0),(﹣1,1);[应用]不是,理由见解析.【分析】[尝试]
(1)将t的值代入“再生二次函数”中,通过配方可得到顶点的坐标;
(2)将点A的坐标代入抛物线L直接进行验证即可;
(3)已知点B在抛物线L上,将该点坐标代入抛物线L的解析式中直接求解,即可得到n的值.
[发现]
将抛物线L展开,然后将含t值的式子整合到一起,令该式子为0(此时无论t取何值都不会对函数值产生影响),即可求出这个定点的坐标.
[应用]
将[发现]中得到的两个定点坐标代入二次函数y=-3x2+5x+2中进行验证即可.【详解】解:[尝试](1)∵将t=2代入抛物线L中,得:y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)=2x2﹣4x=2(x﹣1)2﹣2,∴此时抛物线的顶点坐标为:(1,﹣2).(2)∵将x=2代入y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4),得y=0,∴点A(2,0)在抛物线L上.(3)将x=﹣1代入抛物线L的解析式中,得:n=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)=1.[发现]∵将抛物线L的解析式展开,得:y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)=t(x﹣2)(x+1)﹣2x+4当x=2时,y=0,当x=-1时,y=1,与t无关,∴抛物线L必过定点(2,0)、(﹣1,1).[应用]将x=2代入y=﹣3x2+5x+2,y=0,即点A在抛物线上.将x=﹣1代入y=﹣3x2+5x+2,计算得:y=﹣1≠1,即可得抛物线y=﹣3x2+5x+2不经过点B,∴二次函数y=﹣3x2+5x+2不是二次函数y=x2﹣3x+2和一次函数y=﹣2x+4的一个“再生二次函数”.【点睛】本题考查二次函数的新型定义问题,熟练掌握二次函数的图像与性质,理解“再生二次函数”的定义是解题的关键.21、(1)猜想:AC与⊙O相切;(2)四边形BOCD为菱形;(3)【解析】(1)根据等腰三角形的性质得∠A=∠ABC=30°,再由OB=OC得∠OCB=∠OBC=30°,所以∠ACO=∠ACB-∠OCB=90°,然后根据切线的判定定理即可得到,AC是⊙O的切线;(2)连结OD,由CD∥AB得到∠AOC=∠OCD,根据三角形外角性质得∠AOC=∠OBC+∠OCB=60°,所以∠OCD=60°,于是可判断△OCD为等边三角形,则CD=OB=OC,先可判断四边形OBDC为平行四边形,加上OB=OC,于是可判断四边形BOCD为菱形;(3)在Rt△AOC中,根据含30度的直角三角形三边的关系得到OC=,再根据弧长公式计算出弧BC的弧长=然后根据圆锥的计算求圆锥的底面圆半径.【详解】(1)AC与⊙O相切,∠ACB=120°,∴∠ABC=∠A=30°.,∠CBO=∠BCO=30°,∴∠OCA=120°-30°=90°,∴AC⊥OC,又∵OC是⊙O的半径,∴AC与⊙O相切.(2)四边形BOCD是菱形连接OD.∵CD∥AB,∴∠OCD=∠AOC=2×30°=60°,∴△COD是等边三角形,,∴四边形BOCD是平行四边形,∴四边形BOCD是菱形.,(3)在Rt△AOC中,∠A=30°,AC=6,ACtan∠A=6tan30°=,∴弧BC的弧长∴底面圆半径【点睛】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了菱形的判定方法和圆锥的计算.22、【分析】画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【详解】解:在这些图形中,B,C,E是轴对称图形,画树状图如下:由树状图知,共有20种等可能结果,其中两次所抽取的卡片恰好都是轴对称图形的有6种结果,两次所抽取的卡片恰好都是轴对称图形的概率为.【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.23、(1)-1,20;(2)当x=10时,该商品的销售利润最大,最大利润是25元;(3)7≤x≤13【分析】(1)利用待定系数法求二次函数解析式得出即可;
(2)利用配方法求出二次函数最值即可;
(3)根据题意令y=16,解方程可得x的值,结合图象可知x的范围.【详解】解:(1)y=ax2+bx-1图象过点(5,0)、(7,16),
∴解得:故答案为-1,20⑵∵∴当x=10时,该商品的销售利润最大,最大利润是25元.⑶根据题意,当y=16时,得:-x2+20x-1=16,
解得:x1=7,x2=13,
即销售单价7≤x≤13时,该种商品每天的销售利润不低于16元.【点睛】此题主要考查了二次函数的应用以及
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年全球及中国紧凑型真空干燥箱行业头部企业市场占有率及排名调研报告
- 2025-2030全球高纯涡轮分子泵行业调研及趋势分析报告
- 自治物业管理合同
- 工厂员工劳动合同范本
- 展柜采购合同
- 农场承包合同协议书
- 建筑工程合同的简述
- 杭州市二手房买卖合同
- 砌体施工劳务合同
- 2025抵押担保借款合同
- 医院课件:《食源性疾病知识培训》
- 浙教版七年级数学下册单元测试题及参考答案
- 华为人才发展与运营管理
- 卓有成效的管理者读后感3000字
- 七年级下册-备战2024年中考历史总复习核心考点与重难点练习(统部编版)
- 岩土工程勘察服务投标方案(技术方案)
- 实验室仪器设备验收单
- 新修订药品GMP中药饮片附录解读课件
- 蒙特利尔认知评估量表北京版
- 领导干部个人有关事项报告表(模板)
- GB/T 7631.18-2017润滑剂、工业用油和有关产品(L类)的分类第18部分:Y组(其他应用)
评论
0/150
提交评论