高中数学必修一高中数学必修公开课教案-函数模型的应用举例-第二课时公开课教案课件课时训练练习教案课_第1页
高中数学必修一高中数学必修公开课教案-函数模型的应用举例-第二课时公开课教案课件课时训练练习教案课_第2页
高中数学必修一高中数学必修公开课教案-函数模型的应用举例-第二课时公开课教案课件课时训练练习教案课_第3页
高中数学必修一高中数学必修公开课教案-函数模型的应用举例-第二课时公开课教案课件课时训练练习教案课_第4页
高中数学必修一高中数学必修公开课教案-函数模型的应用举例-第二课时公开课教案课件课时训练练习教案课_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第2课时函数模型的应用举例导入新课思路1.(事例导入)一辆汽车在水平的公路上匀加速行驶,初速度为v0,加速度为a,那么经过t小时它的速度为多少?在这t小时中经过的位移是多少?试写出它们函数解析式,它们分别属于那种函数模型?v=v0+at,s=v0t+at2,它们分别属于一次函数模型和二次函数模型.不仅在物理现象中用到函数模型,在其他现实生活中也经常用到函数模型,今天我们继续讨论函数模型的应用举例.思路2.(直接导入)前面我们学习了函数模型的应用,今天我们在巩固函数模型应用的基础上进一步讨论函数拟合问题.推进新课新知探究提出问题①我市某企业常年生产一种出口产品,根据需求预测:进入21世纪以来,前8年在正常情况下,该产品产量将平稳增长.已知2000年为第一年,头4年年产量f(x)(万件)如下表所示:x1234f(x)4.005.587.008.441°画出2000~2003年该企业年产量的散点图;建立一个能基本反映(误差小于0.1)这一时期该企业年产量发展变化的函数模型,并求之.2°2006年(即x=7)因受到某外国对我国该产品反倾销的影响,年产量应减少30%,试根据所建立的函数模型,确定2006年的年产量应该约为多少?②什么是函数拟合?③总结建立函数模型解决实际问题的基本过程.讨论结果:①1°如图3-2-2-5,设f(x)=ax+b,代入(1,4)、(3,7),得解得a=,b=.∴f(x)=x+.检验:f(2)=5.5,|5.58-5.5|=0.08<0.1;f(4)=8.5,|8.44-8.5|=0.06<0.1.∴模型f(x)=x+能基本反映产量变化.2°f(7)=13,13×70%=9.1,2006年年产量应约为9.1万件.图3-2-2-5②函数拟合:根据搜集的数据或给出的数据画出散点图,然后选择函数模型并求出函数解析式,再进行拟合比较选出最恰当函数模型的过程.③建立函数模型解决实际问题的基本过程为:图3-2-2-6应用示例思路1例1某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元.销售单价与日均销售量的关系如下表所示:销售单价/元6789101112日均销售量/桶480440400360320280240请根据以上数据作出分析,这个经营部怎样定价才能获得最大利润?解:根据上表,销售单价每增加1元,日均销售量就减少40桶.设在进价基础上增加x元后,日均销售利润为y元,而在此情况下的日均销售量就为480-40(x-1)=520-40x(桶).由于x>0,且520-40x>0,即0<x<13,于是可得y=(520-40x)x-200=-40x2+520x-200,0<x<13.易知,当x=6.5时,y有最大值.所以,只需将销售单价定为11.5元,就可获得最大的利润.变式训练某工厂现有80台机器,每台机器平均每天生产384件产品,现准备增加一批同类机器以提高生产总量,在试生产中发现,由于其他生产条件没变,因此每增加一台机器,每台机器平均每天将少生产4件产品.(1)如果增加x台机器,每天的生产总量为y件,请你写出y与x之间的关系式;(2)增加多少台机器,可以使每天的生产总量最大?最大生产总量是多少?解:(1)设在原来基础上增加x台,则每台生产数量为384-4x件,机器台数为80+x,由题意有y=(80+x)(384-4x).(2)整理得y=-4x2+64x+30720,由y=-4x2+64x+30720,得y=-4(x-8)2+30976,所以增加8台机器每天生产的总量最大,最大生产总量为30976件.点评:二次函数模型是现实生活中最常见数学模型.例2某地区不同身高的未成年男性的体重平均值如下表:身高∕cm60708090100110120130140150160170体重∕kg6.137.909.9912.1515.0217.5020.9226.8631.1138.8547.2555.05(1)根据上表提供的数据,能否建立恰当的函数模型,使它能比较近似地反映这个地区未成年男性体重ykg与身高xcm的函数关系?试写出这个函数模型的解析式.(2)若体重超过相同身高男性体重的1.2倍为偏胖,低于0.8倍为偏瘦,那么这个地区一名身高为175cm,体重为78kg的在校男生的体重是否正常?活动:学生先思考或讨论,再回答.教师根据实际,可以提示引导:根据表的数据画出散点图.观察发现,这些点的连线是一条向上弯曲的曲线.根据这些点的分布情况,可以考虑用y=a·bx这一函数模型来近似刻画这个地区未成年男性体重ykg与身高xcm的函数关系.解:(1)以身高为横坐标,体重为纵坐标,画出散点图(图3-2-2-7).根据点的分布特征,可以考虑用y=a·bx作为刻画这个地区未成年男性体重ykg与身高xcm关系的函数模型.如果取其中的两组数据(70,7.90),(160,47.25),代入y=a·bx,得用计算器算得a≈2,b≈1.02.这样,我们就得到一个函数模型:y=2×1.02x.将已知数据代入上述函数解析式,或作出上述函数的图象(图3-2-2-8),可以发现,这个函数模型与已知数据的拟合程度较好,这说明它能较好地反映这个地区未成年男性体重与身高的关系.(2)将x=175代入y=2×1.02x,得y=2×1.02175,由计算器算得y≈63.98.由于78÷63.98≈1.22>1.2,所以这个男生偏胖.图3-2-2-7图3-2-2-8变式训练九十年代,政府间气候变化专业委员会(IPCC)提供的一项报告指出:使全球气候逐年变暖的一个重要因素是人类在能源利用与森林砍伐中使CO2浓度增加.据测,1990年、1991年、1992年大气中的CO2浓度分别比1989年增加了1个可比单位、3个可比单位、6个可比单位.若用一个函数模拟九十年代中每年CO2浓度增加的可比单位数y与年份增加数x的关系,模拟函数可选用二次函数或函数y=a·bx+c(其中a、b、c为常数),且又知1994年大气中的CO2浓度比1989年增加了16个可比单位,请问用以上哪个函数作为模拟函数较好?解:(1)若以f(x)=px2+qx+r作模拟函数,则依题意得解得所以f(x)=x2+x.(2)若以g(x)=a·bx+c作模拟函数,则解得所以g(x)=·()x-3.(3)利用f(x)、g(x)对1994年CO2浓度作估算,则其数值分别为:f(5)=15可比单位,g(5)=17.25可比单位,∵|f(5)-16|<|g(5)-16|,故选f(x)=x2+x作为模拟函数与1994年的实际数据较为接近.思路2例1某自来水厂的蓄水池有400吨水,水厂每小时可向蓄水池中注水60吨,同时蓄水池又向居民小区不间断供水,t小时内供水总量为1206t吨,其中0≤t≤24.(1)从供水开始到第几小时,蓄水池中的存水量最少?最少水量是多少吨?(2)若蓄水池中水量少于80吨时,就会出现供水紧张现象,请问:在一天的24小时内,有几小时出现供水紧张现象?活动:学生先思考或讨论,再回答.教师根据实际,可以提示引导.思路分析:首先建立函数模型,利用函数模型解决实际问题.解:设供水t小时,水池中存水y吨,则(1)y=400+60t-120=60()2+40(1≤t≤24),当t=6时,ymin=40(吨),故从供水开始到第6小时,蓄水池中的存水量最少,最少存水为40吨.(2)依条件知60()2+40<80,1≤t≤24,解得<t<,=8.故一天24小时内有8小时出现供水紧张.例22007泰安高三期末统考,文18某蛋糕厂生产某种蛋糕的成本为40元/个,出厂价为60元/个,日销售量为1000个,为适应市场需求,计划提高蛋糕档次,适度增加成本.若每个蛋糕成本增加的百分率为x(0<x<1),则每个蛋糕的出厂价相应提高的百分率为0.5x,同时预计日销售量增加的百分率为0.8x,已知日利润=(出厂价一成本)×日销售量,且设增加成本后的日利润为y.(1)写出y与x的关系式;(2)为使日利润有所增加,求x的取值范围.解:(1)由题意得y=[60×(1+0.5x)-40×(1+x)]×1000×(1+0.8x)=2000(-4x2+3x+10)(0<x<1).(2)要保证日利润有所增加,当且仅当即解得0<x<.所以为保证日利润有所增加,x应满足0<x<.点评:函数模型应用经常伴随方程和不等式的应用,它们是有机的整体.知能训练2007广东韶关统考,文18某养殖厂需定期购买饲料,已知该厂每天需要饲料200千克,每千克饲料的价格为1.8元,饲料的保管与其他费用为平均每千克每天0.03元,购买饲料每次支付运费300元.(1)求该厂多少天购买一次饲料才能使平均每天支付的总费用最小;(2)若提供饲料的公司规定,当一次购买饲料不少于5吨时其价格可享受八五折优惠(即原价的85%).问该厂是否考虑利用此优惠条件,请说明理由.解:(1)设该厂应隔x(x∈N*)天购买一次饲料,平均每天支付的总费用为y1,∵饲料的保管与其他费用每天比前一天少200×0.03=6(元).∴x天饲料的保管与其他费用共有6(x-1)+6(x-2)+…+6=3x2-3x(元).从而有y1=(3x2-3x+300)+200×1.8=+3x+357,可以证明y1=+3x+357,在(0,10)上为减函数,在(10,+∞)上为增函数.∴当x=10时,y1有最小值417,即每隔10天购买一次饲料才能使平均每天支付的总费用最小.(2)若厂家利用此优惠条件,则至少25天购买一次饲料,设该厂利用此优惠条件,每隔x天(x≥25)购买一次饲料,平均每天支付的总费用为y2,则y2=(3x2-3x+300)+200×1.8×0.85=+3x+303(x≥25).∵函数y2在[25,+∞)上是增函数,∴当x=25时,y2取得最小值为390.而390<417,∴该厂应接受此优惠条件.拓展提升如何用函数模型解决物理问题?例:在测量某物理量的过程中,因仪器和观察的误差,使得n次测量分别得到a1,a2,…,an共n个数据,我们规定所测量的物理量的“最佳近似值”a是这样一个量:与其他近似值比较a与各数据差的平方和最小,依此规定,从a1,a2,a3,…,an推出的a=________.活动:学生先思考或讨论,再回答.教师根据实际,可以提示引导:此题应排除物理因素的干扰,抓准题中的数量关系,将问题转化成函数求最值问题.解:由题意可知,所求a应使y=(a-a1)2+…+(a-an)2最小,由于y=na2-2(a1+a2+…+an)2a+(a12+a22+…+an2).若把a看作自变量,则y是关于a的二次函数,于是问题转化为求二次函数的最小值.因为n>0,二次函数f(a)图象开口方向向上,当a=(a1+a2+…+an)时,y有最小值,所以a=(a1+a2+…+an)即为所求.点评:此题在高考中是具有导向意义的试题,它以物理知识和简单数学知识为基础,并以物理学科中的统计问题为背景,给出一个新的定义,要求学生读懂题目,抽象其中的数量关系,将文字语言转化为符号语言,即y=(a-a1)2+(a-a2)2+…+(a-an)2,然后运用函数的思想方法去解决问题.解题关键是将函数式化成以a为自变量的二次函数形式,这是函数思想在解决实际问题中的应用.课堂小结1.巩固函数模型的应用.2.初步掌握函数拟合思想,并会用函数拟合思想解决实际问题.作业课本P107习题3.2B组1、2.设计感想本节通过事例引入课题,接着通过事例让学生感受什么是函数拟合;课本的例3是函数模型的应用,例4是函数拟合的应用,这都是本节的重点.因此本节选用了多个地市的模拟试题进行强化训练,其中开放性函数拟合问题更值得关注.本节素材鲜活丰富,结构合理有序,难度适中贴近高考.习题详解(课本第98页练习)1.y2.2.设第1轮病毒发作时有a1=10台被感染,第2轮,第3轮,…,依次有a2台,a3台,…被感染,依题意有a5=10×204=160.答:在第5轮病毒发作时会有160万台被感染.(课本第101页练习)三个函数图象如下:图3-2-2-9由图象可以看到,函数(1)以“爆炸”式的速度增长;函数(2)增长缓慢,并渐渐趋于稳定;函数(3)以稳定的速度增加.(课本第104页练习)1.(1)已知人口模型为y=y0ert,其中y0表示t=0时的人口数,r表示人口的年增长率.若按1650年世界人口5亿,年增长率为0.3%估计,有y=5e0.003t.当y=10时,解得t≈231.所以,1881年世界人口数约为1650年的2倍.同理,可知2003年世界人口数约为1970年的2倍.(2)由此看出,此模型不太适宜估计跨度时间非常大的人口增长情况.2.由题意有75t-4.9t2=100,解得t=,即t1≈1.480,t2≈13.827.所以,子弹保持在100m以上的时间t=t2-t1≈12.35,在此过程中,子弹最大速率v1=v0-9.8t=75-9.8×1.480=60.498m/s.答:子弹保持在100米以上高度的时间是12.35秒,在此过程中,子弹速率的范围是v∈(0,60.498).(课本第106页练习)1.(1)由题意可得y1=150+0.25x,y2=+0.25,y3=0.35x,y4=0.35x-(150+0.25x)=0.1x-150.(2)画出y4=0.1x-150的图象如下.图3-2-2-10由图象可知,当x<1500件时,该公司亏损;当x=1500件时,公司不赔不赚;当x>1500件时,公司赢利.2.(1)列表.(2)画散点图.图3-2-2-113.确定函数模型.甲:y1=-x2+12x+41,乙:y2=-52.07×0.778x+92.5.(4)做出函数图象进行比较.图3-2-2-12图3-2-2-13图3-2-2-14计算x=6时,y1=77,y2=80.9.可见,乙选择的模型较好.(课本第107页习题3.2)A组1.(1)列表.(2)描点.图3-2-2-15(3)根据点的分布特征,可以考虑以d=kf+b作为刻画长度与拉力的函数模型,取两组数据(1,14.2)、(4,57.5),有解得所以d=14.4f-0.2.将已知数据带入上述解析式或作出函数图象,可以发现,这个函数模型与已知数据拟合程度较好,说明它能较好地反映长度与拉力的关系.图3-2-2-162.由=(60)2a,得a=.由=x2,得x=3010.因为3010<100,所以这辆车没有超速.3.(1)x=(2)v=图略.4.设水池总造价为y元,水池长度为xm,则y=(12x+)95+×135,画出函数y1=(12x+)95+×135和函数y2=7的图象.图3-2-2-17由图可知,若y1≤7,则x应介于[x1,x2]之间,x1,x2即为方程(12x+)95+×135=70000的两个根.解得x1≈6.4,x2≈31.3.答:水池的长与宽应该控制在[6.4,31.3]之间.5.将x=0,y=1.01×105和x=2400,y=0.90×105分别代入y=cekx,得到解得c=所以y=1.01×105ex.当x=5596m时,y=0.772×105(Pa)<0.775×105(Pa).答:这位游客的决定是冒险的决定.6.由500≤2500()t<1500,解得2.3<t≤7.2.答:应该在用药2.3小时后及7.2小时以前补充药.B组1.(1)利用计算器画出1990~2000年国内生产总值的图象如下.图3-2-2-18(2)根据以上图象的特征,可考虑用函数y=kx+b刻画国民生产总值发展变化的趋势.取(1994,46670)(1998,76967.1)两组数据代入上式,得解得这样,我们就得到了函数模型y=7574.275x-15056434.35.作出上述函数图象如下.图3-2-2-19根据上述函数图象,我们发现这个函数模型与已知数据的拟合程度较好,这说明它能较好地反映国民生产总值的发展变化.(3)以x=2004代入以上模型可得y=122412.75亿元,由此可预测2004年的国民生产总值约为122412.75亿元.2.(1)点A,B的实际意义为当乘客量为0时,亏损1(单位);当乘客量为1.5单位时,收支持平;射线AB上的点的实际意义为当乘客量小于1.5时公司将亏损,当乘客量大于1.5时公司将赢利.(2)图2的建议是:降低成本而保持票价不变;图3的建议是:提高票价而保持成本不变.下课啦,咱们来听个小故事吧:活动目的:教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的,每个人都要保护它,做到节约每一滴水,造福子孙万代。

活动过程:

1.主持人上场,神秘地说:“我让大家猜个谜语,你们愿意吗?”大家回答:“愿意!”

主持人口述谜语:

“双手抓不起,一刀劈不开,

煮饭和洗衣,都要请它来。”

主持人问:“谁知道这是什么?”生答:“水!”

一生戴上水的头饰上场说:“我就是同学们猜到的水。听大家说,我的用处可大了,是真的吗?”

主持人:我宣布:“水”是万物之源主题班会现在开始。

水说:“同学们,你们知道我有多重要吗?”齐答:“知道。”

甲:如果没有水,我们人类就无法生存。

小熊说:我们动物可喜欢你了,没有水我们会死掉的。

花说:我们花草树木更喜欢和你做朋友,没有水,我们早就枯死了,就不能为美化环境做贡献了。

主持人:下面请听快板《水的用处真叫大》

竹板一敲来说话,水的用处真叫大;

洗衣服,洗碗筷,洗脸洗手又洗脚,

煮饭洗菜又沏茶,生活处处离不开它。

栽小树,种庄稼,农民伯伯把它夸;

鱼儿河马大对虾,日日夜夜不离它;

采煤发电要靠它,京城美化更要它。

主持人:同学们,听完了这个快板,你们说水的用处大不大?

甲说:看了他们的快板表演,我知道日常生活种离不了水。

乙说:看了表演后,我知道水对庄稼、植物是非常重要的。

丙说:我还知道水对美化城市起很大作用。

2.主持人:水有这么多用处,你们该怎样做呢?

(1)(生):我要节约用水,保护水源。

(2)(生):我以前把水壶剩的水随便就到掉很不对,以后我一定把喝剩下的水倒在盆里洗手用。

(3)(生):前几天,我看到了学校电视里转播的“水日谈水”的节目,很受教育,同学们看得可认真了,知道了我们北京是个缺水城市,我们再不能浪费水了。

(4)(生):我要用洗脚水冲厕所。

3.主持人:大家谈得都很好,下面谁想出题考考大家,答对了请给点掌声。

(1)(生):小明让爸爸刷车时把水龙头开小点,请回答对不对。

(2)(生):小兰告诉奶奶把洗菜水别到掉,留冲厕所用。

(3)一生跑上说:主持人请把手机借我用用好吗?我想现在就给姥姥打个电话,告诉她做饭时别把淘米水到掉了,用它冲厕所或浇花用。(电话内容略写)

(4)一生说:主持人我们想给大家表演一个小品行吗?

主持人:可以,大家欢迎!请看小品《这又不是我家的》

大概意思是:学校男厕所便池堵了,水龙头又大开,水流满地。学生甲乙丙三人分别上厕所,看见后又皱眉又骂,但都没有关水管,嘴里还念念有词,又说:“反正不是我家的。”

旁白:“那又是谁家的呢?”

主持人:看完这个小品,你们有什么想法吗?谁愿意给大家说说?

甲:刚才三个同学太自私了,公家的水也是大家的,流掉了多可惜,应该把水龙头关上。

乙:上次我去厕所看见水龙头没关就主动关上了。

主持人:我们给他鼓鼓掌,今后你们发现水龙头没关会怎样做呢?

齐:主动关好。

小记者:同学们,你们好!我想打扰一下,听说你们正在开班会,我想采访一下,行吗?

主持人:可以。

小记者:这位同学,你好!通过参加今天的班会你有什么想法,请谈谈好吗?

答:我要做节水的主人,不浪费一滴水。

小记者:请这位同学谈谈好吗?

答:今天参加班会我知道了节约每一滴水要从我们每个人做起。我想把每个厕所都贴上“节约用水”的字条,这样就可以提醒同学们节约用水了。

小记者:你们谈得很好,我的收获也很大。我还有新任务先走了,同学们再见!

水跑上来说:同学们,今天我很高兴,我“水伯伯”今天很开心,你们知道了有了我就有了生命的源泉,请你们今后一定节约用水呀!让人类和动物、植物共存,迎接美好的明天!

主持人:你们还有发言的吗?

答:有。

生:我代表人们谢谢你,水伯伯,节约用水就等于保护我们人类自己。

动物:小熊上场说:我代表动物家族谢谢你了,我们也会保护你的!

花草树木跑上场说:我们也不会忘记你的贡献!

水伯伯:(手舞足蹈地跳起了舞蹈)……同学们的笑声不断。

主持人:水伯伯,您这是干什么呢?

水伯伯:因为我太高兴了,今后还请你们多关照我呀!

主持人:水伯伯,请放心,今后我们一定会做得更好!再见!

4.主持人:大家欢迎老师讲话!

同学们,今天我们召开的班会非常生动,非常有意义。水是生命之源,无比珍贵,愿同学们能加倍珍惜它,做到节约一滴水,造福子孙后代。

5.主持人宣布:“水”是万物之源主题班会到此结束。

6.活动效果:

此次活动使学生明白了节约用水的道理,浪费水的现象减少了,宣传节约用水的人增多了,人人争做节水小标兵

活动目的:教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的,每个人都要保护它,做到节约每一滴水,造福子孙万代。

活动过程:

1.主持人上场,神秘地说:“我让大家猜个谜语,你们愿意吗?”大家回答:“愿意!”

主持人口述谜语:

“双手抓不起,一刀劈不开,

煮饭和洗衣,都要请它来。”

主持人问:“谁知道这是什么?”生答:“

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论