江苏省淮安市盱眙中学2024届全国统一招生考试仿真模拟(十一)数学试题_第1页
江苏省淮安市盱眙中学2024届全国统一招生考试仿真模拟(十一)数学试题_第2页
江苏省淮安市盱眙中学2024届全国统一招生考试仿真模拟(十一)数学试题_第3页
江苏省淮安市盱眙中学2024届全国统一招生考试仿真模拟(十一)数学试题_第4页
江苏省淮安市盱眙中学2024届全国统一招生考试仿真模拟(十一)数学试题_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省淮安市盱眙中学2024届全国统一招生考试仿真模拟(十一)数学试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设等差数列的前n项和为,且,,则()A.9 B.12 C. D.2.已知函数是定义在上的偶函数,且在上单调递增,则()A. B.C. D.3.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数(即质数)的和”,如,.在不超过20的素数中,随机选取两个不同的数,其和等于20的概率是()A. B. C. D.以上都不对4.已知复数满足:,则的共轭复数为()A. B. C. D.5.在中,角的对边分别为,,若,,且,则的面积为()A. B. C. D.6.已知某几何体的三视图如图所示,其中正视图与侧视图是全等的直角三角形,则该几何体的各个面中,最大面的面积为()A.2 B.5 C. D.7.设双曲线的左右焦点分别为,点.已知动点在双曲线的右支上,且点不共线.若的周长的最小值为,则双曲线的离心率的取值范围是()A. B. C. D.8.已知集合,则()A. B. C. D.9.已知椭圆的左、右焦点分别为、,过的直线交椭圆于A,B两点,交y轴于点M,若、M是线段AB的三等分点,则椭圆的离心率为()A. B. C. D.10.已知是过抛物线焦点的弦,是原点,则()A.-2 B.-4 C.3 D.-311.已知抛物线:()的焦点为,为该抛物线上一点,以为圆心的圆与的准线相切于点,,则抛物线方程为()A. B. C. D.12.在直角中,,,,若,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数在上单调递增,则实数a值范围为_________.14.函数的定义域为__________.15.已知函数,在区间上随机取一个数,则使得≥0的概率为.16.已知平行于轴的直线与双曲线:的两条渐近线分别交于,两点,为坐标原点,若为等边三角形,则双曲线的离心率为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在三棱柱ABC﹣A1B1C1中,A1A⊥平面ABC,∠ACB=90°,AC=CB=C1C=1,M,N分别是AB,A1C的中点.(1)求证:直线MN⊥平面ACB1;(2)求点C1到平面B1MC的距离.18.(12分)在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程和曲线的直角坐标方程;(2)若点在曲线上,点在曲线上,求的最小值及此时点的坐标.19.(12分)2019年是五四运动100周年.五四运动以来的100年,是中国青年一代又一代接续奋斗、凯歌前行的100年,是中口青年用青春之我创造青春之中国、青春之民族的100年.为继承和发扬五四精神在青年节到来之际,学校组织“五四运动100周年”知识竞赛,竞赛的一个环节由10道题目组成,其中6道A类题、4道B类题,参赛者需从10道题目中随机抽取3道作答,现有甲同学参加该环节的比赛.(1)求甲同学至少抽到2道B类题的概率;(2)若甲同学答对每道A类题的概率都是,答对每道B类题的概率都是,且各题答对与否相互独立.现已知甲同学恰好抽中2道A类题和1道B类题,用X表示甲同学答对题目的个数,求随机变量X的分布列和数学期望.20.(12分)在中,内角的对边分别为,且(1)求;(2)若,且面积的最大值为,求周长的取值范围.21.(12分)如图,在三棱锥中,平面平面,,.点,,分别为线段,,的中点,点是线段的中点.(1)求证:平面.(2)判断与平面的位置关系,并证明.22.(10分)已知函数.(1)当时,求函数在处的切线方程;(2)若函数没有零点,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

由,可得以及,而,代入即可得到答案.【题目详解】设公差为d,则解得,所以.故选:A.【题目点拨】本题考查等差数列基本量的计算,考查学生运算求解能力,是一道基础题.2、C【解题分析】

根据题意,由函数的奇偶性可得,,又由,结合函数的单调性分析可得答案.【题目详解】根据题意,函数是定义在上的偶函数,则,,有,又由在上单调递增,则有,故选C.【题目点拨】本题主要考查函数的奇偶性与单调性的综合应用,注意函数奇偶性的应用,属于基础题.3、A【解题分析】

首先确定不超过的素数的个数,根据古典概型概率求解方法计算可得结果.【题目详解】不超过的素数有,,,,,,,,共个,从这个素数中任选个,有种可能;其中选取的两个数,其和等于的有,,共种情况,故随机选出两个不同的数,其和等于的概率.故选:.【题目点拨】本题考查古典概型概率问题的求解,属于基础题.4、B【解题分析】

转化,为,利用复数的除法化简,即得解【题目详解】复数满足:所以故选:B【题目点拨】本题考查了复数的除法和复数的基本概念,考查了学生概念理解,数学运算的能力,属于基础题.5、C【解题分析】

由,可得,化简利用余弦定理可得,解得.即可得出三角形面积.【题目详解】解:,,且,,化为:.,解得..故选:.【题目点拨】本题考查了向量共线定理、余弦定理、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.6、D【解题分析】

根据三视图还原出几何体,找到最大面,再求面积.【题目详解】由三视图可知,该几何体是一个三棱锥,如图所示,将其放在一个长方体中,并记为三棱锥.,,,故最大面的面积为.选D.【题目点拨】本题主要考查三视图的识别,复杂的三视图还原为几何体时,一般借助长方体来实现.7、A【解题分析】

依题意可得即可得到,从而求出双曲线的离心率的取值范围;【题目详解】解:依题意可得如下图象,所以则所以所以所以,即故选:A【题目点拨】本题考查双曲线的简单几何性质,属于中档题.8、A【解题分析】

考虑既属于又属于的集合,即得.【题目详解】.故选:【题目点拨】本题考查集合的交运算,属于基础题.9、D【解题分析】

根据题意,求得的坐标,根据点在椭圆上,点的坐标满足椭圆方程,即可求得结果.【题目详解】由已知可知,点为中点,为中点,故可得,故可得;代入椭圆方程可得,解得,不妨取,故可得点的坐标为,则,易知点坐标,将点坐标代入椭圆方程得,所以离心率为,故选:D.【题目点拨】本题考查椭圆离心率的求解,难点在于根据题意求得点的坐标,属中档题.10、D【解题分析】

设,,设:,联立方程得到,计算得到答案.【题目详解】设,,故.易知直线斜率不为,设:,联立方程,得到,故,故.故选:.【题目点拨】本题考查了抛物线中的向量的数量积,设直线为可以简化运算,是解题的关键.11、C【解题分析】

根据抛物线方程求得点的坐标,根据轴、列方程,解方程求得的值.【题目详解】不妨设在第一象限,由于在抛物线上,所以,由于以为圆心的圆与的准线相切于点,根据抛物线的定义可知,、轴,且.由于,所以直线的倾斜角为,所以,解得,或(由于,故舍去).所以抛物线的方程为.故选:C【题目点拨】本小题主要考查抛物线的定义,考查直线的斜率,考查数形结合的数学思想方法,属于中档题.12、C【解题分析】

在直角三角形ABC中,求得,再由向量的加减运算,运用平面向量基本定理,结合向量数量积的定义和性质:向量的平方即为模的平方,化简计算即可得到所求值.【题目详解】在直角中,,,,,

若,则故选C.【题目点拨】本题考查向量的加减运算和数量积的定义和性质,主要是向量的平方即为模的平方,考查运算能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

由在上恒成立可求解.【题目详解】,令,∵,∴,又,,从而,令,问题等价于在时恒成立,∴,解得.故答案为:.【题目点拨】本题考查函数的单调性,解题关键是问题转化为恒成立,利用换元法和二次函数的性质易求解.14、【解题分析】

根据函数成立的条件列不等式组,求解即可得定义域.【题目详解】解:要使函数有意义,则,即.则定义域为:.故答案为:【题目点拨】本题主要考查定义域的求解,要熟练掌握张建函数成立的条件.15、【解题分析】试题分析:可以得出,所以在区间上使的范围为,所以使得≥0的概率为考点:本小题主要考查与长度有关的几何概型的概率计算.点评:几何概型适用于解决一切均匀分布的问题,包括“长度”、“角度”、“面积”、“体积”等,但要注意求概率时做比的上下“测度”要一致.16、2【解题分析】

根据为等边三角形建立的关系式,从而可求离心率.【题目详解】据题设分析知,,所以,得,所以双曲线的离心率.【题目点拨】本题主要考查双曲线的离心率的求解,根据条件建立之间的关系式是求解的关键,侧重考查数学运算的核心素养.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析.(2)【解题分析】

(1)连接AC1,BC1,结合中位线定理可证MN∥BC1,再结合线面垂直的判定定理和线面垂直的性质分别求证AC⊥BC1,BC1⊥B1C,即可求证直线MN⊥平面ACB1;(2)作交于点,通过等体积法,设C1到平面B1CM的距离为h,则有,结合几何关系即可求解【题目详解】(1)证明:连接AC1,BC1,则N∈AC1且N为AC1的中点;∵M是AB的中点.所以:MN∥BC1;∵A1A⊥平面ABC,AC⊂平面ABC,∴A1A⊥AC,在三棱柱ABC﹣A1B1C1中,AA1∥CC,∴AC⊥CC1,∵∠ACB=90°,BC∩CC1=C,BC⊂平面BB1C1C,CC1⊂平面BB1C1C,∴AC⊥平面BB1C1C,BC⊂平面BB1C1C,∴AC⊥BC1;又MN∥BC1∴AC⊥MN,∵CB=C1C=1,∴四边形BB1C1C正方形,∴BC1⊥B1C,∴MN⊥B1C,而AC∩B1C=C,且AC⊂平面ACB1,CB1⊂平面ACB1,∴MN⊥平面ACB1,(2)作交于点,设C1到平面B1CM的距离为h,因为MP,所以•MP,因为CM,B1C;B1M,所以所以:CM•B1M.因为,所以,解得所以点,到平面的距离为【题目点拨】本题主要考查面面垂直的证明以及点到平面的距离,一般证明面面垂直都用线面垂直转化为面面垂直,而点到面的距离常用体积转化来求,属于中档题18、(1);(2)最小值为,此时【解题分析】

(1)消去曲线参数方程的参数,求得曲线的普通方程.利用极坐标和直角坐标相互转化公式,求得曲线的直角坐标方程.(2)设出的坐标,结合点到直线的距离公式以及三角函数最值的求法,求得的最小值及此时点的坐标.【题目详解】(1)消去得,曲线的普通方程是:;把,代入得,曲线的直角坐标方程是(2)设,的最小值就是点到直线的最小距离.设在时,,是最小值,此时,所以,所求最小值为,此时【题目点拨】本小题主要考查参数方程化为普通方程,考查极坐标方程转化为直角坐标方程,考查利用圆锥曲线的参数求最值,属于中档题.19、(1);(2)分布列见解析,期望为.【解题分析】

(1)甲同学至少抽到2道B类题包含两个事件:一个抽到2道B类题,一个是抽到3个B类题,计算出抽法数后可求得概率;(2)的所有可能值分别为,依次计算概率得分布列,再由期望公式计算期望.【题目详解】(1)令“甲同学至少抽到2道B类题”为事件,则抽到2道类题有种取法,抽到3道类题有种取法,∴;(2)的所有可能值分别为,,,,,∴的分布列为:0123【题目点拨】本题考查古典概型,考查随机变量的概率分布列和数学期望.解题关键是掌握相互独立事件同时发生的概率计算公式.20、(1)(2)【解题分析】

(1)利用二倍角公式及三角形内角和定理,将化简为,求出的值,结合,求出A的值;(2)写出三角形的面积公式,由其最大值为求出.由余弦定理,结合,,求出的范围,注意.进而求出周长的范围.【题目详解】解:(1)整理得解得或(舍去)又;(2)由题意知,又,,又周长的取值范围是【题目点拨】本题考查了二倍角余弦公式,三角形面积公式,余弦定理的应用,求三角形的周长的范围问题.属于中档题.21、(1)见解析(2)平面.见解析【解题分析】

(1)要证平面,只需证明,,即可求得答案;(2)连接交于点,连接,根据已知条件求证,即可判断与平面的位置关系,进而求得答案.【题目详解】(1),为边的中点,,平面平面,平面平面,平面,平面,,在内,,为所在边的中点,,又,,平面.(2)判断可知,平面,证明如下:连接交于点,连接.、、分别为边、、的中点,.又是的重心,,,平面,平面,平面.【题目点拨】本题主要考查了求证线面垂直和线面平行,解题关键

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论