益阳市重点中学2024届高三5月模块测试数学试题_第1页
益阳市重点中学2024届高三5月模块测试数学试题_第2页
益阳市重点中学2024届高三5月模块测试数学试题_第3页
益阳市重点中学2024届高三5月模块测试数学试题_第4页
益阳市重点中学2024届高三5月模块测试数学试题_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

益阳市重点中学2024届高三5月模块测试数学试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.己知,,,则()A. B. C. D.2.《九章算术》“少广”算法中有这样一个数的序列:列出“全步”(整数部分)及诸分子分母,以最下面的分母遍乘各分子和“全步”,各自以分母去约其分子,将所得能通分之分数进行通分约简,又用最下面的分母去遍乘诸(未通者)分子和以通之数,逐个照此同样方法,直至全部为整数,例如:及时,如图:记为每个序列中最后一列数之和,则为()A.147 B.294 C.882 D.17643.若双曲线:的一条渐近线方程为,则()A. B. C. D.4.已知是定义在上的奇函数,当时,,则()A. B.2 C.3 D.5.如图,内接于圆,是圆的直径,,则三棱锥体积的最大值为()A. B. C. D.6.如图所示,已知双曲线的右焦点为,双曲线的右支上一点,它关于原点的对称点为,满足,且,则双曲线的离心率是().A. B. C. D.7.己知函数若函数的图象上关于原点对称的点有2对,则实数的取值范围是()A. B. C. D.8.已知等差数列的公差为,前项和为,,,为某三角形的三边长,且该三角形有一个内角为,若对任意的恒成立,则实数().A.6 B.5 C.4 D.39.设是虚数单位,复数()A. B. C. D.10.根据最小二乘法由一组样本点(其中),求得的回归方程是,则下列说法正确的是()A.至少有一个样本点落在回归直线上B.若所有样本点都在回归直线上,则变量同的相关系数为1C.对所有的解释变量(),的值一定与有误差D.若回归直线的斜率,则变量x与y正相关11.两圆和相外切,且,则的最大值为()A. B.9 C. D.112.已知数列是公比为的等比数列,且,若数列是递增数列,则的取值范围为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知集合A=,B=,若AB中有且只有一个元素,则实数a的值为_______.14.在中,,.若,则_________.15.在编号为1,2,3,4,5且大小和形状均相同的五张卡片中,一次随机抽取其中的三张,则抽取的三张卡片编号之和是偶数的概率为________.16.已知,为正实数,且,则的最小值为________________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图所示,在四棱锥中,底面为正方形,,,,,为的中点,为棱上的一点.(1)证明:面面;(2)当为中点时,求二面角余弦值.18.(12分)已知函数,不等式的解集为.(1)求实数,的值;(2)若,,,求证:.19.(12分)已知函数,且曲线在处的切线方程为.(1)求的极值点与极值.(2)当,时,证明:.20.(12分)如图所示,在四棱锥中,∥,,点分别为的中点.(1)证明:∥面;(2)若,且,面面,求二面角的余弦值.21.(12分)设数阵,其中、、、.设,其中,且.定义变换为“对于数阵的每一行,若其中有或,则将这一行中每个数都乘以;若其中没有且没有,则这一行中所有数均保持不变”(、、、).表示“将经过变换得到,再将经过变换得到、,以此类推,最后将经过变换得到”,记数阵中四个数的和为.(1)若,写出经过变换后得到的数阵;(2)若,,求的值;(3)对任意确定的一个数阵,证明:的所有可能取值的和不超过.22.(10分)已知等差数列和等比数列的各项均为整数,它们的前项和分别为,且,.(1)求数列,的通项公式;(2)求;(3)是否存在正整数,使得恰好是数列或中的项?若存在,求出所有满足条件的的值;若不存在,说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】

先将三个数通过指数,对数运算变形,再判断.【题目详解】因为,,所以,故选:B.【题目点拨】本题主要考查指数、对数的大小比较,还考查推理论证能力以及化归与转化思想,属于中档题.2、A【解题分析】

根据题目所给的步骤进行计算,由此求得的值.【题目详解】依题意列表如下:上列乘上列乘上列乘630603153021020156121510所以.故选:A【题目点拨】本小题主要考查合情推理,考查中国古代数学文化,属于基础题.3、A【解题分析】

根据双曲线的渐近线列方程,解方程求得的值.【题目详解】由题意知双曲线的渐近线方程为,可化为,则,解得.故选:A【题目点拨】本小题主要考查双曲线的渐近线,属于基础题.4、A【解题分析】

由奇函数定义求出和.【题目详解】因为是定义在上的奇函数,.又当时,,.故选:A.【题目点拨】本题考查函数的奇偶性,掌握奇函数的定义是解题关键.5、B【解题分析】

根据已知证明平面,只要设,则,从而可得体积,利用基本不等式可得最大值.【题目详解】因为,所以四边形为平行四边形.又因为平面,平面,所以平面,所以平面.在直角三角形中,,设,则,所以,所以.又因为,当且仅当,即时等号成立,所以.故选:B.【题目点拨】本题考查求棱锥体积的最大值.解题方法是:首先证明线面垂直同,得棱锥的高,然后设出底面三角形一边长为,用建立体积与边长的函数关系,由基本不等式得最值,或由函数的性质得最值.6、C【解题分析】

易得,,又,平方计算即可得到答案.【题目详解】设双曲线C的左焦点为E,易得为平行四边形,所以,又,故,,,所以,即,故离心率为.故选:C.【题目点拨】本题考查求双曲线离心率的问题,关键是建立的方程或不等关系,是一道中档题.7、B【解题分析】

考虑当时,有两个不同的实数解,令,则有两个不同的零点,利用导数和零点存在定理可得实数的取值范围.【题目详解】因为的图象上关于原点对称的点有2对,所以时,有两个不同的实数解.令,则在有两个不同的零点.又,当时,,故在上为增函数,在上至多一个零点,舍.当时,若,则,在上为增函数;若,则,在上为减函数;故,因为有两个不同的零点,所以,解得.又当时,且,故在上存在一个零点.又,其中.令,则,当时,,故为减函数,所以即.因为,所以在上也存在一个零点.综上,当时,有两个不同的零点.故选:B.【题目点拨】本题考查函数的零点,一般地,较为复杂的函数的零点,必须先利用导数研究函数的单调性,再结合零点存在定理说明零点的存在性,本题属于难题.8、C【解题分析】

若对任意的恒成立,则为的最大值,所以由已知,只需求出取得最大值时的n即可.【题目详解】由已知,,又三角形有一个内角为,所以,,解得或(舍),故,当时,取得最大值,所以.故选:C.【题目点拨】本题考查等差数列前n项和的最值问题,考查学生的计算能力,是一道基础题.9、D【解题分析】

利用复数的除法运算,化简复数,即可求解,得到答案.【题目详解】由题意,复数,故选D.【题目点拨】本题主要考查了复数的除法运算,其中解答中熟记复数的除法运算法则是解答的关键,着重考查了运算与求解能力,属于基础题.10、D【解题分析】

对每一个选项逐一分析判断得解.【题目详解】回归直线必过样本数据中心点,但样本点可能全部不在回归直线上﹐故A错误;所有样本点都在回归直线上,则变量间的相关系数为,故B错误;若所有的样本点都在回归直线上,则的值与相等,故C错误;相关系数r与符号相同,若回归直线的斜率,则,样本点分布应从左到右是上升的,则变量x与y正相关,故D正确.故选D.【题目点拨】本题主要考查线性回归方程的性质,意在考查学生对该知识的理解掌握水平和分析推理能力.11、A【解题分析】

由两圆相外切,得出,结合二次函数的性质,即可得出答案.【题目详解】因为两圆和相外切所以,即当时,取最大值故选:A【题目点拨】本题主要考查了由圆与圆的位置关系求参数,属于中档题.12、D【解题分析】

先根据已知条件求解出的通项公式,然后根据的单调性以及得到满足的不等关系,由此求解出的取值范围.【题目详解】由已知得,则.因为,数列是单调递增数列,所以,则,化简得,所以.故选:D.【题目点拨】本题考查数列通项公式求解以及根据数列单调性求解参数范围,难度一般.已知数列单调性,可根据之间的大小关系分析问题.二、填空题:本题共4小题,每小题5分,共20分。13、2【解题分析】

利用AB中有且只有一个元素,可得,可求实数a的值.【题目详解】由题意AB中有且只有一个元素,所以,即.故答案为:.【题目点拨】本题主要考查集合的交集运算,集合交集的运算本质是存同去异,侧重考查数学运算的核心素养.14、【解题分析】分析:首先设出相应的直角边长,利用余弦勾股定理得到相应的斜边长,之后应用余弦定理得到直角边长之间的关系,从而应用正切函数的定义,对边比临边,求得对应角的正切值,即可得结果.详解:根据题意,设,则,根据,得,由勾股定理可得,根据余弦定理可得,化简整理得,即,解得,所以,故答案是.点睛:该题考查的是有关解三角形的问题,在解题的过程中,注意分析要求对应角的正切值,需要求谁,而题中所给的条件与对应的结果之间有什么样的连线,设出直角边长,利用所给的角的余弦值,利用余弦定理得到相应的等量关系,求得最后的结果.15、【解题分析】

先求出所有的基本事件个数,再求出“抽取的三张卡片编号之和是偶数”这一事件包含的基本事件个数,利用古典概型的概率计算公式即可算出结果.【题目详解】一次随机抽取其中的三张,所有基本事件为:1,2,3;1,2,4;1,2,5;1,3,4;1,3,5;1,4,5;2,3,4;2,3,5;2,4,5;3,4,5;共有10个,其中“抽取的三张卡片编号之和是偶数”包含6个基本事件,因此“抽取的三张卡片编号之和是偶数”的概率为:.故答案为:.【题目点拨】本题考查了古典概型及其概率计算公式,属于基础题.16、【解题分析】

由,为正实数,且,可知,于是,可得,再利用基本不等式即可得出结果.【题目详解】解:,为正实数,且,可知,,.当且仅当时取等号.的最小值为.故答案为:.【题目点拨】本题考查了基本不等式的性质应用,恰当变形是解题的关键,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解题分析】

(1)要证明面面,只需证明面即可;(2)以为坐标原点,以,,分别为,,轴建系,分别计算出面法向量,面的法向量,再利用公式计算即可.【题目详解】证明:(1)因为底面为正方形,所以又因为,,满足,所以又,面,面,,所以面.又因为面,所以,面面.(2)由(1)知,,两两垂直,以为坐标原点,以,,分别为,,轴建系如图所示,则,,,,则,.所以,,,,设面法向量为,则由得,令得,,即;同理,设面的法向量为,则由得,令得,,即,所以,设二面角的大小为,则所以二面角余弦值为.【题目点拨】本题考查面面垂直的证明以及利用向量法求二面角,考查学生的运算求解能力,此类问题关键是准确写出点的坐标,是一道中档题.18、(1),.(2)见解析【解题分析】

(1)分三种情况讨论即可(2)将,的值代入,然后利用均值定理即可.【题目详解】解:(1)不等式可化为.即有或或.解得,或或.所以不等式的解集为,故,.(2)由(1)知,,即,由,得,,当且仅当,即,时等号成立.故,即.【题目点拨】考查绝对值不等式的解法以及用均值定理证明不等式,中档题.19、(1)极小值点为,极小值为,无极大值;(2)证明见解析【解题分析】

先对函数求导,结合已知及导数的几何意义可求,结合单调性即可求解函数的极值点及极值;令,问题可转化为求解函数的最值,结合导数可求.【题目详解】(1)由题得函数的定义域为.,由已知得,解得∴,令,得令,得,∴在上单调递增.令,得∴在上单调递减∴的极小值点为,极小值为,无极大值.(2)证明:由(1)知,∴,令,即∵,,∴恒成立.∴在上单调递增又,∴在上恒成立∴在上恒成立∴,即∴【题目点拨】本题考查了利用导数研究函数的极值问题,考查利用导数证明不等式,意在考查学生对这些知识的理解掌握水平,属于中档题.20、(1)证明见解析(2)【解题分析】

(1)根据题意,连接交于,连接,利用三角形全等得,进而可得结论;(2)建立空间直角坐标系,利用向量求得平面的法向量,进而可得二面角的余弦值.【题目详解】(1)证明:连接交于,连接,,≌,且,面面,面,(2)取中点,连,.由,面面面,又由,以分别为轴建立如图所示空间直角坐标系,设,则,,,,,,为面的一个法向量,设面的法向量为,依题意,即,令,解得,所以,平面的法向量,,又因二面角为锐角,故二面角的余弦值为.【题目点拨】本题考查直线与平面平行的证明,考查二面角的余弦值的求法,解题时要认真审题,注意中位线和向量法的合理运用,属于基础题.21、(1);(2);(3)见解析.【解题分析】

(1)由,能求出经过变换后得到的数阵;(2)由,,求出数阵经过变化后的矩阵,进而可求得的值;(3)分和两种情况讨论,推导出变换后数阵的第一行和第二行的数字之和,由此能证明的所有可能取值的和不超过.【题目详解】(1),经过变换后得到的数阵;(2)经变换后得,故;(3)若,在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论