循环水节能方案汇总_第1页
循环水节能方案汇总_第2页
循环水节能方案汇总_第3页
循环水节能方案汇总_第4页
循环水节能方案汇总_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

循环水节能方案汇总循环水节能方案汇总循环水节能方案汇总循环水节能方案汇总北京时代科仪新能源科技有限公司目录TOC\o"1-3"\h\u前言 3JsHE9。第一章循环水节能的理论基础 4hSlnk。1.1水泵分析理论 4MyWRS。1.2系统运行分析理论 53RVe8。1.2.1热功率的传递公式 5F0Rto。1.2.2水泵功率的表达式 5kfur7。第二章阀门控制节能 6Gio3A。2.1阀门控制节能的原理(智慧阀门) 63t8O3。2.2阀门控制节能的效果 6Wdlq6。第三章变频节能 69alJN。3.1变频节能的原理 6BnGfM。3.2变频节能的改进 7VYjOK。第四章温差控制节能 7aaHAN。4.1温差控制节能的原理 76JsQ6。4.2温差控制节能的弊端 7L4B9B。第五章水泵参数改制节能 8OJeif。5.1水泵参数改制原理 8N8sBo。5.1.1水泵扬程设计偏大 8Bqyiz。5.1.2水泵不能处于高效区间 8nfuSF。5.2水泵参数改制的方法 8Q8i4n。5.2.1更换水泵 8v2VpX。5.2.2更换叶轮 8XsmSi。5.2.3切削叶轮 8keKZX。5.3注意事项 9PbOTf。第六章冷却塔节能 9ELeRs。6.1冷却塔节能原理 9It0FX。6.2冷却塔均水改造 98GC4x。6.2.1塔间均水 9MzuC8。6.2.2塔内均水 9AJKNi。6.3冷却塔改制 945FdP。6.3.1延长填料 9FrNrv。6.3.2更换风机 10lzeOI。6.4高负压冷却塔 1070BGN。6.5冷却塔风扇变频 10R1HSn。6.6启用备用冷却塔 10p64C0。6.7水轮风机 1074nZZ。6.8冷却塔节能小结 10MdC8F。第七章节能的利器:循环水智能控制系统 11rBBud。7.1时代科仪循环水智能控制系统的原理 1199WBy。7.2时代科仪循环水智能控制系统的特点 11Ibdtx。7.3案例分析 125a9BS。第八章复合式闭环冷却塔 12uxex1。8.1原理和特征 12lNzCy。8.2技术特点 12VjB9P。8.3应用场合 13BxIbx。第九章循环水节能的其它技术方案 13ODXFT。9.1分压供水 13W3N43。9.2管路优化 13mLPWC。9.3清淤、整修、除垢 13KS1dQ。后记 13ze7LU。前言在工业企业、楼宇中央空调中,循环水的使用都相当普遍。循环水的主要功能在于将生产设备、制冷设备的热量换出并释放,其工作的流程一般都不复杂,主要是先将冷水输送到被冷却的设备,循环过程中将热量带出来,并输送到冷却塔散热,将水温降低之后收集到水池中,如此不断循环,过程中蒸发的水量通过自动补水系统进行补充。在循环过程中,水泵是动力设备,冷却塔是散热设备。NphEl。水泵:提供循环的动力冷却塔及风机:使热量散发到空气中循环水系统在冶炼、化工、制药、电子、纺织等产业居于重要位置,耗电量较大,在中央空调等领域,其能耗也占据较大比重,研究循环水系统的节能对于企业和楼宇节电具有较大意义。Hii49。为了实现循环水节能,北京时代科仪新能源科技有限公司进行了6年的研究和实践。北京时代科仪新能源科技有限公司成立于2010,总部和研发中心位于北京市海淀区中关村科技园区上地信息产业基地。企业专注于节能产品的研发,是国家高新技术企业、国家软件企业、国家创新基金资助企业、国家发改委备案的节能服务公司。oXydW。企业以技术创新作为核心工作和发展动力,研制了多项国内外领先的独创节能技术,申请发明专利6项,实用新型专利11项。公司涉及的节能产品主要包括:空压机系统节能、循环冷却水系统节能、中央空调系统节能、电梯节能、并网逆变器等。主要应用领域为:工业企业节电、大型公建系统的节电,提供一站式综合节能服务。pkHRV。企业的主营业务为:节能方案研发、节能产品生产、节能工程实施、节能项目服务。公司具有较强的节能项目实施经验,为中牧制药、英利集团、桐昆集团、香飘飘、宝洁、天能电池、联合特钢、天津机场、外交部、湖州市政府大楼等实施了节能项目,效果显著。并为清华大学、北京交通大学、中科院等高校和院所提供设备、技术服务,或具有合作关系。通过数年的发展,公司具备丰富的节能项目经验和项目实施能力。ZxeoH。企业成立以来,先后研制了电力并网逆变装置、空压机智能节能系统、循环冷却水智能节能系统、大型离心设备智能节能系统、污水处理厂综合节能系统等节能产品,并申报了相关的专利和软件著作权。,在相关领域获得了一定的研究成果,具有相应资质,拥有独立知识产权,既往项目业绩突出。ok3mY。本文将循环水节能相关技术进行小结和汇总,以供参考。第一章循环水节能的理论基础循环水系统的能耗部件主要是水泵和冷却塔风机,此两项以及工艺、气候之间存在密切的关联,因此分析难度较大。本章主要介绍基本理论,帮助对各种节能技术进行相应的分析。yF11w。1.1水泵分析理论水泵主要的分析理论在于水泵的两条曲线,分别是性能曲线和效率曲线,由于水泵的真实表现主要受到扬程影响,因此将性能曲线和效率曲线都以扬程为自变量绘出,如下所示:JubYf。流量曲线效率曲线对于变速泵,遵循相似原理,曲线如下所示:以上曲线,含有丰富的信息量,只要充分解读,就能够分析水泵的性能和节能潜力,北京时代科仪的工程师就是采用以上曲线充分挖掘,实现了诸多节能方法的分析过程。Mnafb。1.2系统运行分析理论循环水系统的运行具有较多变量,如何准确、快捷分析其节能潜力?北京时代科仪的工程师采用两个基本公式对循环水进行分析,获得主要的节能潜力数据:Wi7P9。1.2.1热功率的传递公式循环冷却水的任务就是将热量带走并散发到空气中去,因此带走热量就是循环冷却水的任务,带走的热量按照热功率来计算,那么热功率为:1XEuZ。P=cQΔT其中P为热功率,c为水的比热(常数),Q为水的流量,ΔT为出水和回水的温差,等于进入冷却塔和流出冷却塔的温差。pH7Gd。此公式用于分析流量、温差的相互关系,并考虑气候对散热的影响,作为智能化控制的基础理论。1.2.2水泵功率的表达式循环冷却水的代价主要是电能的消耗、水的消耗、清洗维护成本等。其中水泵电能消耗的为:P功耗=Qh/η其中P功耗为水泵的功耗,Q为流量,h为水泵的扬程,η为水泵的效率。从这个表达式,我们可以分析减小功耗的途径是:充分利用或者减小流量Q,充分利用或者减小扬程h,提高泵的效率η。北京时代科仪的工程师通过以上表达式,对节能方法进行分析,以下进行初步解释:流量Q:由于Q与温差ΔT成反比,那么就应该保证合理的温差,根据气候变化进行准确的流量调节,还要保证冷却塔的散热能力,保证水流进入冷却塔的均衡性,充分利用流量。oDlfg。扬程h:根据现场不同的特点,可以适当调节扬程h使得运行在最经济状态,对于系统设计不合理的可进行改进,使得泵的入口存在较大扬程从而减少对扬程的需求,敞开阀门使得扬程损失减小,有条件时可采用富裕扬程发电回收等。Bz9Nu。水泵效率η:水泵的效率与实际运行状况密切相关,不同工况下水泵的效率可能大幅变动,针对现场实际情况修改水泵的设计或者进行精确的调节使得水泵运行在高效状态非常必要。Zd4uP。经过上述三个过程的优化,循环冷却水系统的实际功耗通常能够显著下降,部分的还可实现节水、减少清洗等效果,但是不同现场的循环冷却水条件各不相同,经过分析后采取的节能手段也不相同,工程师们致力于提供一站式服务,综合手段减少循环冷却水的能耗。qEJFr。第二章阀门控制节能循环水系统最简单的方法是采用阀门控制节能,本章进行简单叙述。2.1阀门控制节能的原理(智慧阀门)循环水系统一般按照夏季最大水量需求而设计,在日常运行中,流量具有裕量。通过阀门控制,减小水泵的输出流量,达到节能的目的。从水泵的性能曲线中查询,当水泵扬程增大时,流量就会减小,流量减小的幅度大于扬程增大的幅度,从而水泵功耗下降。通过一套自动控制系统,可以控制阀门的开度,实现流量、水温受控,这种具有自动控制能力的阀门称为“智慧阀门”。dOJB8。2.2阀门控制节能的效果阀门控制能够降低水泵的输出流量,但是同时会增大水泵的输出压力,水泵的功耗下降程度没有流量下降明显,其节能效果较为有限,由于阀门具有额外的能量损失,其节能效果仅限于降低水泵功耗的部分,其主要作用在于避免水泵的超载。此种节能方式目前在化工等现场仍然在大量使用,有必要更换成更佳的节能方式。pf58s。第三章变频节能变频节能的主要设备是变频器,对水泵进行降速运行,已经获得广泛应用。3.1变频节能的原理北京时代科仪新能源科技有限公司的工程师通过水泵性能曲线分析变频节能的原理:为了实现低于水泵额定流量的一个实际流量,采用阀门控制势必增大水泵的输出扬程,但是如果采用减速运行,则能在更低的扬程条件下输出该流量。在流量相同的情况下,扬程下降非常明显,从而实现了水泵功率的大幅下降。变频节能是一个进步,而至今用户仍然不能完全掌握变频的特性,也未必能够将变频用好,仍然需要节能工作者的认真引导和服务。ZKGwH。3.2变频节能的改进通常变频器只在一组水泵中的一台配置,实践证明,此种配置不能充分发挥变频器的节能作用,也不能使得水泵运行在高效区间,因此这种方法存在改进的余地。理想的变频配置应是:为每台运行的泵配置变频器,并且等速运行,具体原则可咨询北京时代科仪工程师。TdGaB。第四章温差控制节能温差控制是在变频节能基础上发展出来的,本章进行简述。4.1温差控制节能的原理根据热功率传递公式,如果温差增大,则对流量的需求减少。工程师们自然将温差作为控制指标,通过保证温差来实现流量的限制,从而实现节能。流量与温差成反比,在相当多的场合,实现温差较低,通过适当拉大温差运行,能够显著降低流量需求,再采用变频器控制水泵,降低流量的产生,从而实现节能。LeFt2。为了实现温差控制,一般在冷却塔或者表冷器的两端分别设立水温传感器,将温差测量出来,并指定一个温差目标,通过流量控制实现温差恒定。Melhg。4.2温差控制节能的弊端温差控制方式在变频器的基础上具备了基本的自控能力,但是,对于温差的指定未必科学。例如:夏季某日的环境湿度极高,接近饱和,此时冷却塔无法将温差拉开,温差控制系统为了增大温差,不断降低流量,导致热量难以散出,最终冷却水因温度过高而引起系统跳车。从这个极端例子可见,温差控制是具有逻辑缺陷的,虽然被写入教科书,但是仍然不具备理论和逻辑上的正确性。0Mw4O。北京时代科仪的工程师对温差控制的弊端进行了充分的分析,并给出了一种智能化温差设置方案,弥补了这个缺陷,并应用在循环水智能控制系统中。1JKqi。第五章水泵参数改制节能循环水系统一经设计,参数就会固定,而出厂参数往往不适合现场的真实需要,因此对水泵参数进行改制就是一种节能手段。A7cXE。5.1水泵参数改制原理5.1.1水泵扬程设计偏大根据水泵性能曲线,假设水泵扬程配置偏大,则水泵容易出现流量过大,进而导致过载,因此就采用阀门限制流量,同时水泵的输出压力提高,满足扬程匹配关系。由于阀门的阻碍作用,带来了较大的能量损失。通过改制水泵,矫正扬程偏高的问题。M15Ro。5.1.2水泵不能处于高效区间某些现场水泵的扬程与实际背压不匹配,根据水泵效率曲线,当扬程不匹配时,水泵不能处于高效区间,实际性能下降。通过改制水泵,使改制后的水泵扬程匹配程度提高,处于高效区间。IUoCk。5.2水泵参数改制的方法以上水泵参数改制,一般称为“高效泵”节能,其主要原理是提高水泵的实际运行效率,并且改制后的泵力求在工艺上更加先进、高效,使泵本体获得节能效果,具体方法有:jdpVS。5.2.1更换水泵测量现场具体运行环境和所需参数,重新设计、制造、更换水泵。5.2.2更换叶轮保留原有泵壳,重新设计、制造、更换叶轮。5.2.3切削叶轮对原有叶轮进行切割,更改直径、间隙参数,降低扬程和流量。5.3注意事项以上各种泵改制的方法,其本质是降低泵的设计扬程,获得更好的实际运行效率。有必要时,同时会降低泵的输出流量,以减少泵的设计裕量。水泵改制方法存在一定的风险,主要是不可恢复性,在夏季容易出现流量不足、还得多开一台泵的情况,其结果适得其反,特别是切削叶轮,失败案例较多,应慎重选用。3Amm6。第六章冷却塔节能循环水系统必须与冷却塔配合工作,因此冷却塔节能也不可小视,在此列举。6.1冷却塔节能原理根据热功率传递公式,如果温差增大,那么流量需求减少。通过冷却塔的改进,能够实现温差增大的目标,并使得水温下降,从而需要更少的流量,实现节能。52Scz。6.2冷却塔均水改造6.2.1塔间均水北京时代科仪的工程师通过焊接各塔之间的均水管路,实现各塔之间水量均衡,杜绝塔内部填料干枯现象,充分利用散热面积、提高滞空时间,使得水气交换更充分,从而自然拉大温差,降低流量需求,实现节能。KISn0。6.2.2塔内均水使用特制的布水喷头,对水量进行均匀分配,实现塔内均水,使得有效散热面积充分发挥出来,实现节能。6.3冷却塔改制在部分现场,由于冷却塔设计失误或者年久失修,散热能力不足,造成水温偏高,水泵不得不满负荷工作,浪费能源,通过冷却塔的改制,使得问题改善,降低使用能耗,方法如下:s2UVi。6.3.1延长填料通过重建冷却塔骨架,并更换较长的填料,延长水气交换距离,增大散热面积,获得更好的冷却效果,从而有望降低水泵的功耗。ofOYF。6.3.2更换风机将冷却塔风机更换成负压更大的风机,提高通风性能,获得更好的散热效果,以降低整体的能耗。6.4高负压冷却塔采用厂家定制的高负压冷却塔,又称“低温冷却塔”,该塔的主要特点是填料具有两次散热机会,空气先经过第一段填料蒸发预冷,再进入第二段填料,有望降低水温;同时,采用高负压的风机,提高通风能力,负压增大、降低湿球温度。该冷却塔对于散热能力不足、水温高、整体运行能耗过高的问题有效。ohWR1。6.5冷却塔风扇变频通过冷却塔风扇变频,主要目的并不是降低冷却塔风扇的能耗,而在于:冬季无需关闭部分冷却塔风机,较多的冷却塔风机都可以适度运行,较多冷却塔都具有通风功能,从而充分利用填料散热面积,提高整体的性能系数EER。79262。冷却塔风机变频对于北方地区冬季运行有利,其最佳配置方式与水泵变频类似,都应是全部配置、等速运行。6.6启用备用冷却塔在某些现场,存在备用冷却塔,例如:中央空调多台机组中未运行的机组对应的冷却塔;发电厂中未运行机组对应的冷却塔。通过启用备用冷却塔,或者采取“一机双塔”,充分利用散热面积,拉大温差,降低流量需求,获得节能效果。6.7水轮风机如前述水泵性能曲线分析,在秋冬季节时,需要的流量较小,此时通过阀门开度的降低,限制流量,水泵输出扬程增大、出现“富余扬程”,该部分额外扬程完全被阀门消耗。如果采用水轮机利用这部分扬程推动冷却塔风扇工作,则可以实现一部分节能效果。但该技术在实际应用时存在较多弊端,当夏季来临,此时水量和风量都要求较大,可能无法满足系统的散热要求,出现问题,因此该技术应慎用。pimnx。6.8冷却塔节能小结冷却塔在系统中的重要性常常被忽视,冷却塔的性能会对整体运行能耗水平起到决定性的作用,应重点关注。冷却塔最佳的控制方式是:充分利用散热面积、合理通风、均衡运行,起到最大的散热作用,拉大温差,便于实现整体的最佳性能,实现最大程度的节能。3GNcK。第七章节能的利器:循环水智能控制系统北京时代科仪的循环水智能控制系统是一种综合的节能技术,是上述各章的集大成者,具有较好的节能效果,在此重点论述。N9n6q。7.1时代科仪循环水智能控制系统的原理根据前述水泵功耗的表达式,考虑水泵节能,应着手考虑三个方面:1、避免多余的压力需求;2、避免过多流量;3、使水泵运行在高效区间。在保证系统稳定运行的基础上,可以从以上三个方面对系统进行配置,挖掘压力、流量、效率的裕量,实现整体效率最大化,起到节能的作用。ktj3l。为了实现上述节能方法,时代科仪设计的循环水智能控制系统含有四大模块,从逻辑上分为:1、温差、压差、流量综合控制系统。根据用户规定的运行区间,自动寻找最佳的节能工作点,对系统参数进行实时调节,实现水泵节能和风机节能。sFvk6。2、水泵最大效率调度系统。计算水泵的效率曲线,并根据用户规定的范围,调度水泵的运行台数,进一步实现水泵节能。c3uqd。3、风、水平衡系统。根据季节和气候选择最佳风、水配比,充分发挥冷却塔的性能,实现风机节能和整体效率最优。7HLA0。4、冷却塔优化控制系统,实现冷却塔的最大散热面积、最佳通风,系统性能系数最大。采用时代科仪技术可以实现整个冷却水系统的协调运行,在此基础上,就能够把原有系统的设计裕量利用起来,根据实际情况,实时调节水泵和风机的运转参数,使得水泵和风机实现合理的节能。imlJr。7.2时代科仪循环水智能控制系统的特点时代科仪循环水智能控制系统的技术特点在于:1、安全可靠性方面:(1)对原有系统改动很小,并且保留备用回路互为备用,保留原系统设计余量,无任何改造隐患,属于“中医调理而非伤筋动骨的大手术”;xpYgW。(2)专利技术可以实现系统任意断电,来电带载复启功能;(3)冗余配置变频驱动装置,降低运行温度,提高设备运行稳定性和寿命;(4)对工艺生产过程中的各种不利情况和可能的故障做了充分的预案和报警。2、安装施工便捷:安装施工周期短,完全不影响正常生产。3、技术扩展性强:增加产能或上新项目整合循环水系统,可随时扩容融入系统,节能效益满足任意测试条件。4、节能效果计量更科学合理:属于可恢复性技术改造,可以满足各种节能率(量)的计量和验收方式。5、深入结合生产工艺要求,确保能够持续实现循环水系统最佳的运行状态。6、有效提高循环冷却水系统的智能化、网络化和自动化管理水平。7、循环水系统整体优化节能,可充分挖掘节能潜力,该项目可实现年平均节电率40%以上。8、另外可以解决或缓解夏季超温、冬季结冰和飘水的问题。7.3案例分析【见循环水智能控制系统的产品介绍】第八章复合式闭环冷却塔8.1原理和特征复合式闭环冷却塔是工作流体在塔的盘管内进行循环,工作流体的热量经过盘管散入流过盘管的水中。同时,机组外四周的空气从盘管上的进风格栅进入,与水的流动方向相反,向上流经盘管。完全靠水的蒸发潜热带走热量,而不像板换靠水的显热带走热量,对水的使用需求量大大减少。一小部分水蒸发而吸走热量,热湿空气由冷却塔顶部的通风机排出到大气中,其余的水落入底部水盘,由水泵再循环至水分配系统又回淋到盘管上。HUCnE。8.2技术特点1、由于冷却水不与外界空气接触,补充水采用软化水,冷却水中不会产生水垢、细菌污泥等杂质污染,有效防止冷水机组冷凝器、换热器堵塞,延长冷水机组使用寿命,减少水处理药剂使用量,比开式冷却塔水损耗量减少。kNaei。2、冬季供冷时,可利用外界较低空气温度采用风冷降温,只开通风机,外循环水泵停开,既提供足够排热能力,又节水,防止结冰,减少结垢。zTkjO。3、冷却水温度稳定,完全符合工艺要求。闭式空冷系统,冷却水冷却温度,可达到该地区年保证率不超过5天的环境温度,即开式冷却塔能达到的冷却温度,闭式空冷循环系统一样能达到。完全符合工艺要求。由于有很多调节温度的措施,可以确保出空冷器的冷却水温度稳定,进而使工艺操作稳定。29tE1。4、提高了工艺换热设备传热效率和寿命。与工艺换热设备换热的是软化水,软水硬度低,杂质少,PH值7-9,微碱性,况且在系统中闭路循环,不受大气污染。大大地减少工艺换热设备结垢和腐蚀,提高了工艺换热设备传热效率和寿命。如高炉的夹套,使用开式循环冷却时,寿命只3年,使用闭式空冷系统后,寿命可提高到8-10年。t

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论