湖南省永州市双牌县第二中学2024届高三第一次模拟测试数学试题试卷_第1页
湖南省永州市双牌县第二中学2024届高三第一次模拟测试数学试题试卷_第2页
湖南省永州市双牌县第二中学2024届高三第一次模拟测试数学试题试卷_第3页
湖南省永州市双牌县第二中学2024届高三第一次模拟测试数学试题试卷_第4页
湖南省永州市双牌县第二中学2024届高三第一次模拟测试数学试题试卷_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省永州市双牌县第二中学2024届高三第一次模拟测试数学试题试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.将函数图象上每一点的横坐标变为原来的2倍,再将图像向左平移个单位长度,得到函数的图象,则函数图象的一个对称中心为()A. B. C. D.2.若直线与曲线相切,则()A.3 B. C.2 D.3.如图所示,三国时代数学家赵爽在《周髀算经》中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影),设直角三角形有一内角为,若向弦图内随机抛掷500颗米粒(米粒大小忽略不计,取),则落在小正方形(阴影)内的米粒数大约为()A.134 B.67 C.182 D.1084.关于函数有下述四个结论:()①是偶函数;②在区间上是单调递增函数;③在上的最大值为2;④在区间上有4个零点.其中所有正确结论的编号是()A.①②④ B.①③ C.①④ D.②④5.在中,,则()A. B. C. D.6.已知双曲线满足以下条件:①双曲线E的右焦点与抛物线的焦点F重合;②双曲线E与过点的幂函数的图象交于点Q,且该幂函数在点Q处的切线过点F关于原点的对称点.则双曲线的离心率是()A. B. C. D.7.已知双曲线:的左、右两个焦点分别为,,若存在点满足,则该双曲线的离心率为()A.2 B. C. D.58.某大学计算机学院的薛教授在2019年人工智能方向招收了6名研究生.薛教授欲从人工智能领域的语音识别、人脸识别,数据分析、机器学习、服务器开发五个方向展开研究,且每个方向均有研究生学习,其中刘泽同学学习人脸识别,则这6名研究生不同的分配方向共有()A.480种 B.360种 C.240种 D.120种9.如图所示的茎叶图为高三某班名学生的化学考试成绩,算法框图中输入的,,,,为茎叶图中的学生成绩,则输出的,分别是()A., B.,C., D.,10.已知双曲线的左、右焦点分别为,圆与双曲线在第一象限内的交点为M,若.则该双曲线的离心率为A.2 B.3 C. D.11.已知a,b是两条不同的直线,α,β是两个不同的平面,且a⊂α,b⊂β,aβ,bα,则“ab“是“αβ”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.已知为实数集,,,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知复数,且满足(其中为虚数单位),则____.14.如图所示,在正三棱柱中,是的中点,,则异面直线与所成的角为____.15.某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,再次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为0.5、0.6、0.4,经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为0.6、0.5、0.75;则第一次烧制后恰有一件产品合格的概率为________;经过前后两次烧制后,合格工艺品的件数为,则随机变量的期望为________.16.已知数列满足对任意,,则数列的通项公式__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列中,,数列的前项和.(1)求;(2)若,求的前项和.18.(12分)已知椭圆,上、下顶点分别是、,上、下焦点分别是、,焦距为,点在椭圆上.(1)求椭圆的方程;(2)若为椭圆上异于、的动点,过作与轴平行的直线,直线与交于点,直线与直线交于点,判断是否为定值,说明理由.19.(12分)已知函数.(1)当时,求不等式的解集;(2)若关于的不等式的解集包含,求实数的取值范围.20.(12分)已知函数.(1)求不等式的解集;(2)若不等式对恒成立,求实数的取值范围.21.(12分)已知各项均为正数的数列的前项和为,满足,,,,恰为等比数列的前3项.(1)求数列,的通项公式;(2)求数列的前项和为;若对均满足,求整数的最大值;(3)是否存在数列满足等式成立,若存在,求出数列的通项公式;若不存在,请说明理由.22.(10分)设,(1)求的单调区间;(2)设恒成立,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】

根据函数图象的变换规律可得到解析式,然后将四个选项代入逐一判断即可.【题目详解】解:图象上每一点的横坐标变为原来的2倍,得到再将图像向左平移个单位长度,得到函数的图象,故选:D【题目点拨】考查三角函数图象的变换规律以及其有关性质,基础题.2、A【解题分析】

设切点为,对求导,得到,从而得到切线的斜率,结合直线方程的点斜式化简得切线方程,联立方程组,求得结果.【题目详解】设切点为,∵,∴由①得,代入②得,则,,故选A.【题目点拨】该题考查的是有关直线与曲线相切求参数的问题,涉及到的知识点有导数的几何意义,直线方程的点斜式,属于简单题目.3、B【解题分析】

根据几何概型的概率公式求出对应面积之比即可得到结论.【题目详解】解:设大正方形的边长为1,则小直角三角形的边长为,

则小正方形的边长为,小正方形的面积,

则落在小正方形(阴影)内的米粒数大约为,

故选:B.【题目点拨】本题主要考查几何概型的概率的应用,求出对应的面积之比是解决本题的关键.4、C【解题分析】

根据函数的奇偶性、单调性、最值和零点对四个结论逐一分析,由此得出正确结论的编号.【题目详解】的定义域为.由于,所以为偶函数,故①正确.由于,,所以在区间上不是单调递增函数,所以②错误.当时,,且存在,使.所以当时,;由于为偶函数,所以时,所以的最大值为,所以③错误.依题意,,当时,,所以令,解得,令,解得.所以在区间,有两个零点.由于为偶函数,所以在区间有两个零点.故在区间上有4个零点.所以④正确.综上所述,正确的结论序号为①④.故选:C【题目点拨】本小题主要考查三角函数的奇偶性、单调性、最值和零点,考查化归与转化的数学思想方法,属于中档题.5、A【解题分析】

先根据得到为的重心,从而,故可得,利用可得,故可计算的值.【题目详解】因为所以为的重心,所以,所以,所以,因为,所以,故选A.【题目点拨】对于,一般地,如果为的重心,那么,反之,如果为平面上一点,且满足,那么为的重心.6、B【解题分析】

由已知可求出焦点坐标为,可求得幂函数为,设出切点通过导数求出切线方程的斜率,利用斜率相等列出方程,即可求出切点坐标,然后求解双曲线的离心率.【题目详解】依题意可得,抛物线的焦点为,F关于原点的对称点;,,所以,,设,则,解得,∴,可得,又,,可解得,故双曲线的离心率是.故选B.【题目点拨】本题考查双曲线的性质,已知抛物线方程求焦点坐标,求幂函数解析式,直线的斜率公式及导数的几何意义,考查了学生分析问题和解决问题的能力,难度一般.7、B【解题分析】

利用双曲线的定义和条件中的比例关系可求.【题目详解】.选B.【题目点拨】本题主要考查双曲线的定义及离心率,离心率求解时,一般是把已知条件,转化为a,b,c的关系式.8、B【解题分析】

将人脸识别方向的人数分成:有人、有人两种情况进行分类讨论,结合捆绑计算出不同的分配方法数.【题目详解】当人脸识别方向有2人时,有种,当人脸识别方向有1人时,有种,∴共有360种.故选:B【题目点拨】本小题主要考查简单排列组合问题,考查分类讨论的数学思想方法,属于基础题.9、B【解题分析】

试题分析:由程序框图可知,框图统计的是成绩不小于80和成绩不小于60且小于80的人数,由茎叶图可知,成绩不小于80的有12个,成绩不小于60且小于80的有26个,故,.考点:程序框图、茎叶图.10、D【解题分析】

本题首先可以通过题意画出图像并过点作垂线交于点,然后通过圆与双曲线的相关性质判断出三角形的形状并求出高的长度,的长度即点纵坐标,然后将点纵坐标带入圆的方程即可得出点坐标,最后将点坐标带入双曲线方程即可得出结果。【题目详解】根据题意可画出以上图像,过点作垂线并交于点,因为,在双曲线上,所以根据双曲线性质可知,,即,,因为圆的半径为,是圆的半径,所以,因为,,,,所以,三角形是直角三角形,因为,所以,,即点纵坐标为,将点纵坐标带入圆的方程中可得,解得,,将点坐标带入双曲线中可得,化简得,,,,故选D。【题目点拨】本题考查了圆锥曲线的相关性质,主要考察了圆与双曲线的相关性质,考查了圆与双曲线的综合应用,考查了数形结合思想,体现了综合性,提高了学生的逻辑思维能力,是难题。11、D【解题分析】

根据面面平行的判定及性质求解即可.【题目详解】解:a⊂α,b⊂β,a∥β,b∥α,由a∥b,不一定有α∥β,α与β可能相交;反之,由α∥β,可得a∥b或a与b异面,∴a,b是两条不同的直线,α,β是两个不同的平面,且a⊂α,b⊂β,a∥β,b∥α,则“a∥b“是“α∥β”的既不充分也不必要条件.故选:D.【题目点拨】本题主要考查充分条件与必要条件的判断,考查面面平行的判定与性质,属于基础题.12、C【解题分析】

求出集合,,,由此能求出.【题目详解】为实数集,,,或,.故选:.【题目点拨】本题考查交集、补集的求法,考查交集、补集的性质等基础知识,考查运算求解能力,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

计算出,两个复数相等,实部与实部相等,虚部与虚部相等,列方程组求解.【题目详解】,所以,所以.故答案为:-8【题目点拨】此题考查复数的基本运算和概念辨析,需要熟练掌握复数的运算法则.14、【解题分析】

要求两条异面直线所成的角,需要通过见中点找中点的方法,找出边的中点,连接出中位线,得到平行,从而得到两条异面直线所成的角,得到角以后,再在三角形中求出角.【题目详解】取的中点E,连AE,,易证,∴为异面直线与所成角,设等边三角形边长为,易算得∴在∴故答案为【题目点拨】本题考查异面直线所成的角,本题是一个典型的异面直线所成的角的问题,解答时也是应用典型的见中点找中点的方法,注意求角的三个环节,一画,二证,三求.15、0.380.9【解题分析】

考虑恰有一件的三种情况直接计算得到概率,随机变量的可能取值为,计算得到概率,再计算数学期望得到答案.【题目详解】第一次烧制后恰有一件产品合格的概率为:.甲、乙、丙三件产品合格的概率分别为:,,.故随机变量的可能取值为,故;;;.故.故答案为:0.38;0.9.【题目点拨】本题考查了概率的计算,数学期望,意在考查学生的计算能力和应用能力.16、【解题分析】

利用累加法求得数列的通项公式,由此求得的通项公式.【题目详解】由题,所以故答案为:【题目点拨】本小题主要考查累加法求数列的通项公式,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解题分析】

(1)由条件得出方程组,可求得的通项,当时,,可得,当时,,得出是以1为首项,2为公比的等比数列,可求得的通项;(2)由(1)可知,,分n为偶数和n为奇数分别求得.【题目详解】(1)由条件知,,,当时,,即,当时,,是以1为首项,2为公比的等比数列,;(2)由(1)可知,,当n为偶数时,当n为奇数时,综上,【题目点拨】本题考查等差数列和等比数列的通项的求得,以及其前n项和,注意分n为偶数和n为奇数两种情况分别求得其数列的和,属于中档题.18、(1);(2),理由见解析.【解题分析】

(1)求出椭圆的上、下焦点坐标,利用椭圆的定义求得的值,进而可求得的值,由此可得出椭圆的方程;(2)设点的坐标为,求出直线的方程,求出点的坐标,由此计算出直线和的斜率,可计算出的值,进而可求得的值,即可得出结论.【题目详解】(1)由题意可知,椭圆的上焦点为、,由椭圆的定义可得,可得,,因此,所求椭圆的方程为;(2)设点的坐标为,则,得,直线的斜率为,所以,直线的方程为,联立,解得,即点,直线的斜率为,直线的斜率为,所以,,,因此,.【题目点拨】本题考查椭圆方程的求解,同时也考查了椭圆中定值问题的求解,考查计算能力,属于中等题.19、(1)(2)【解题分析】

(1)按进行分类,得到等价不等式组,分别解出解集,再取并集,得到答案;(2)将问题转化为在时恒成立,按和分类讨论,分别得到不等式恒成立时对应的的范围,再取交集,得到答案.【题目详解】解:(1)当时,等价于或或,解得或或,所以不等式的解集为:.(2)依题意即在时恒成立,当时,,即,所以对恒成立∴,得;当时,,即,所以对任意恒成立,∴,得∴,综上,.【题目点拨】本题考查分类讨论解绝对值不等式,分类讨论研究不等式恒成立问题,属于中档题.20、(1)(2)【解题分析】

(1)按绝对值的定义分类讨论去绝对值符号后解不等式;(2)不等式转化为,求出在上的最小值即可,利用绝对值定义分类讨论去绝对值符号后可求得函数最小值.【题目详解】解:(1)或或解得或或无解综上不等式的解集为.(2)时,,即所以只需在时恒成立即可令,由解析式得在上是增函数,∴当时,即【题目点拨】本题考查解绝对值不等式,考查不等式恒成立问题,解决绝对值不等式的问题,分类讨论是常用方法.掌握分类讨论思想是解题关键.21、(2),(2),的最大整数是2.(3)存在,【解题分析】

(2)由可得(),然后把这两个等式相减,化简得,公差为2,因为,,为等比数列,所以,化简计算得,,从而得到数列的通项公式,再计算出,,,从而可求出数列的通项公式;(2)令,化简计算得,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论