2024届云南省华宁二中高三下第二次月考试题_第1页
2024届云南省华宁二中高三下第二次月考试题_第2页
2024届云南省华宁二中高三下第二次月考试题_第3页
2024届云南省华宁二中高三下第二次月考试题_第4页
2024届云南省华宁二中高三下第二次月考试题_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届云南省华宁二中高三下第二次月考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线(a>0,b>0)的右焦点为F,若过点F且倾斜角为60°的直线l与双曲线的右支有且只有一个交点,则此双曲线的离心率e的取值范围是()A. B.(1,2), C. D.2.已知函数,则()A. B. C. D.3.已知集合,,则()A. B. C. D.4.在中,角,,的对边分别为,,,若,,,则()A. B.3 C. D.45.已知等差数列的前n项和为,且,则()A.4 B.8 C.16 D.26.若数列满足且,则使的的值为()A. B. C. D.7.函数()的图象的大致形状是()A. B. C. D.8.已知复数,(为虚数单位),若为纯虚数,则()A. B.2 C. D.9.《九章算术》中记载,堑堵是底面为直角三角形的直三棱柱,阳马指底面为矩形,一侧棱垂直于底面的四棱锥.如图,在堑堵中,,,当阳马体积的最大值为时,堑堵的外接球的体积为()A. B. C. D.10.已知,则的值等于()A. B. C. D.11.已知锐角满足则()A. B. C. D.12.的展开式中各项系数的和为2,则该展开式中常数项为A.-40 B.-20 C.20 D.40二、填空题:本题共4小题,每小题5分,共20分。13.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金;随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金.若随机变量ξ1和ξ2分别表示赌客在一局赌博中的赌金和奖金,则D(ξ1)=_____,E(ξ1)﹣E(ξ2)=_____.14.已知的展开式中项的系数与项的系数分别为135与,则展开式所有项系数之和为______.15.已知若存在,使得成立的最大正整数为6,则的取值范围为________.16.在的展开式中,常数项为________.(用数字作答)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在△ABC中,角所对的边分别为向量,向量,且.(1)求角的大小;(2)求的最大值.18.(12分)已知等差数列满足,.(l)求等差数列的通项公式;(2)设,求数列的前项和.19.(12分)已知数列满足,且,,成等比数列.(1)求证:数列是等差数列,并求数列的通项公式;(2)记数列的前n项和为,,求数列的前n项和.20.(12分)如图,在四棱锥中,底面是矩形,四条侧棱长均相等.(1)求证:平面;(2)求证:平面平面.21.(12分)已知曲线的参数方程为为参数,曲线的参数方程为为参数).(1)求与的普通方程;(2)若与相交于,两点,且,求的值.22.(10分)在直角坐标系中,直线的参数方程为(为参数,).在以为极点,轴正半轴为极轴的极坐标中,曲线:.(1)当时,求与的交点的极坐标;(2)直线与曲线交于,两点,线段中点为,求的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

若过点且倾斜角为的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率.根据这个结论可以求出双曲线离心率的取值范围.【题目详解】已知双曲线的右焦点为,若过点且倾斜角为的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率,,离心率,,故选:.【题目点拨】本题考查双曲线的性质及其应用,解题时要注意挖掘隐含条件.2、A【解题分析】

根据分段函数解析式,先求得的值,再求得的值.【题目详解】依题意,.故选:A【题目点拨】本小题主要考查根据分段函数解析式求函数值,属于基础题.3、B【解题分析】

求出集合,利用集合的基本运算即可得到结论.【题目详解】由,得,则集合,所以,.故选:B.【题目点拨】本题主要考查集合的基本运算,利用函数的性质求出集合是解决本题的关键,属于基础题.4、B【解题分析】由正弦定理及条件可得,即.,∴,由余弦定理得。∴.选B。5、A【解题分析】

利用等差的求和公式和等差数列的性质即可求得.【题目详解】.故选:.【题目点拨】本题考查等差数列的求和公式和等差数列的性质,考查基本量的计算,难度容易.6、C【解题分析】因为,所以是等差数列,且公差,则,所以由题设可得,则,应选答案C.7、C【解题分析】

对x分类讨论,去掉绝对值,即可作出图象.【题目详解】故选C.【题目点拨】识图常用的方法(1)定性分析法:通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决问题;(2)定量计算法:通过定量的计算来分析解决问题;(3)函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题.8、C【解题分析】

把代入,利用复数代数形式的除法运算化简,由实部为0且虚部不为0求解即可.【题目详解】∵,∴,∵为纯虚数,∴,解得.故选C.【题目点拨】本题考查复数代数形式的除法运算,考查复数的基本概念,是基础题.9、B【解题分析】

利用均值不等式可得,即可求得,进而求得外接球的半径,即可求解.【题目详解】由题意易得平面,所以,当且仅当时等号成立,又阳马体积的最大值为,所以,所以堑堵的外接球的半径,所以外接球的体积,故选:B【题目点拨】本题以中国传统文化为背景,考查四棱锥的体积、直三棱柱的外接球的体积、基本不等式的应用,体现了数学运算、直观想象等核心素养.10、A【解题分析】

由余弦公式的二倍角可得,,再由诱导公式有,所以【题目详解】∵∴由余弦公式的二倍角展开式有又∵∴故选:A【题目点拨】本题考查了学生对二倍角公式的应用,要求学生熟练掌握三角函数中的诱导公式,属于简单题11、C【解题分析】

利用代入计算即可.【题目详解】由已知,,因为锐角,所以,,即.故选:C.【题目点拨】本题考查二倍角的正弦、余弦公式的应用,考查学生的运算能力,是一道基础题.12、D【解题分析】令x=1得a=1.故原式=.的通项,由5-2r=1得r=2,对应的常数项=80,由5-2r=-1得r=3,对应的常数项=-40,故所求的常数项为40,选D解析2.用组合提取法,把原式看做6个因式相乘,若第1个括号提出x,从余下的5个括号中选2个提出x,选3个提出;若第1个括号提出,从余下的括号中选2个提出,选3个提出x.故常数项==-40+80=40二、填空题:本题共4小题,每小题5分,共20分。13、20.2【解题分析】

分别求出随机变量ξ1和ξ2的分布列,根据期望和方差公式计算得解.【题目详解】设a,b∈{1,2,1,4,5},则p(ξ1=a),其ξ1分布列为:ξ112145PE(ξ1)(1+2+1+4+5)=1.D(ξ1)[(1﹣1)2+(2﹣1)2+(1﹣1)2+(4﹣1)2+(5﹣1)2]=2.ξ2=1.4|a﹣b|的可能取值分别为:1.4,2.3,4.2,5.6,P(ξ2=1.4),P(ξ2=2.3),P(ξ2=4.2),P(ξ2=5.6),可得分布列.ξ21.42.34.25.6PE(ξ2)=1.42.34.25.62.3.∴E(ξ1)﹣E(ξ2)=0.2.故答案为:2,0.2.【题目点拨】此题考查随机变量及其分布,关键在于准确求出随机变量取值的概率,根据公式准确计算期望和方差.14、64【解题分析】

由题意先求得的值,再令求出展开式中所有项的系数和.【题目详解】的展开式中项的系数与项的系数分别为135与,,,由两式可组成方程组,解得或,令,求得展开式中所有的系数之和为.故答案为:64【题目点拨】本题考查了二项式定理,考查了赋值法求多项式展开式的系数和,属于基础题.15、【解题分析】

由题意得,分类讨论作出函数图象,求得最值解不等式组即可.【题目详解】原问题等价于,当时,函数图象如图此时,则,解得:;当时,函数图象如图此时,则,解得:;当时,函数图象如图此时,则,解得:;当时,函数图象如图此时,则,解得:;综上,满足条件的取值范围为.故答案为:【题目点拨】本题主要考查了对勾函数的图象与性质,函数的最值求解,存在性问题的求解等,考查了分类讨论,转化与化归的思想.16、【解题分析】

的展开式的通项为,取计算得到答案.【题目详解】的展开式的通项为:,取得到常数项.故答案为:.【题目点拨】本题考查了二项式定理,意在考查学生的计算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)2【解题分析】

(1)转化条件得,进而可得,即可得解;(2)由化简可得,由结合三角函数的性质即可得解.【题目详解】(1),,由正弦定理得,即,又,,又,,,由可得.(2)由(1)可得,,,,,,的最大值为2.【题目点拨】本题考查了平面向量平行、正弦定理以及三角恒等变换的应用,考查了三角函数的性质,属于中档题.18、(1);(2).【解题分析】试题分析:(1)设等差数列满的首项为,公差为,代入两等式可解。(2)由(1),代入得,所以通过裂项求和可求得。试题解析:(1)设等差数列的公差为,则由题意可得,解得.所以.(2)因为,所以.所以.19、(1)见解析;(2)【解题分析】

(1)因为,所以,所以,所以数列是等差数列,设数列的公差为,由可得,因为成等比数列,所以,所以,所以,因为,所以,解得(舍去)或,所以,所以.(2)由(1)知,,所以,所以.20、(1)证明见解析;(2)证明见解析.【解题分析】

证明:(1)在矩形中,,又平面,平面,所以平面.(2)连结,交于点,连结,在矩形中,点为的中点,又,故,,又,平面,所以平面,又平面,所以平面平面.21、(1),(2)0【解题分析】

(1)分别把两曲线参数方程中的参数消去,即可得到普通方程;(2)把直线的参数方程代入的普通方程,化为关于的一元二次方程,再由根与系数的关系及此时的几何意义求解.【题目详解】(1)由曲线的参数方程为为参数),消去参数,可得;由曲线的参数方程为为参数),消去参数,可得,即.(2)把为参数)代入,得.,..解得:,即,满足△..【题目点拨】本题考查参数方程化普通方程,特别是直线参数方程中参数的几何意义的应用,是中档题.22、(1),;(2)【解题分析】

(1)依题意可知,直线的极

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论