




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届内蒙古自治区普通高中学高三年级下学期第二次统练注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图所示点是抛物线的焦点,点、分别在抛物线及圆的实线部分上运动,且总是平行于轴,则的周长的取值范围是()A. B. C. D.2.阅读名著,品味人生,是中华民族的优良传统.学生李华计划在高一年级每周星期一至星期五的每天阅读半个小时中国四大名著:《红楼梦》、《三国演义》、《水浒传》及《西游记》,其中每天阅读一种,每种至少阅读一次,则每周不同的阅读计划共有()A.120种 B.240种 C.480种 D.600种3.某工厂利用随机数表示对生产的600个零件进行抽样测试,先将600个零件进行编号,编号分别为001,002,……,599,600.从中抽取60个样本,下图提供随机数表的第4行到第6行:若从表中第6行第6列开始向右读取数据,则得到的第6个样本编号是()A.324 B.522 C.535 D.5784.在中,D为的中点,E为上靠近点B的三等分点,且,相交于点P,则()A. B.C. D.5.已知复数z满足(i为虚数单位),则在复平面内复数z对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.设,满足,则的取值范围是()A. B. C. D.7.在四边形中,,,,,,点在线段的延长线上,且,点在边所在直线上,则的最大值为()A. B. C. D.8.函数的值域为()A. B. C. D.9.过抛物线()的焦点且倾斜角为的直线交抛物线于两点.,且在第一象限,则()A. B. C. D.10.双曲线的渐近线方程是()A. B. C. D.11.要得到函数的图象,只需将函数图象上所有点的横坐标()A.伸长到原来的2倍(纵坐标不变),再将得到的图象向右平移个单位长度B.伸长到原来的2倍(纵坐标不变),再将得到的图像向左平移个单位长度C.缩短到原来的倍(纵坐标不变),再将得到的图象向左平移个单位长度D.缩短到原来的倍(纵坐标不变),再将得到的图象向右平移个单位长度12.某四棱锥的三视图如图所示,记为此棱锥所有棱的长度的集合,则().A.,且 B.,且C.,且 D.,且二、填空题:本题共4小题,每小题5分,共20分。13.设是公差不为0的等差数列的前项和,且,则______.14.已知数列满足:,,若对任意的正整数均有,则实数的最大值是_____.15.已知,若,则________.16.设复数满足,则_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)求函数的最小正周期以及单调递增区间;(2)已知,若,,,求的面积.18.(12分)高铁和航空的飞速发展不仅方便了人们的出行,更带动了我国经济的巨大发展.据统计,在2018年这一年内从市到市乘坐高铁或飞机出行的成年人约为万人次.为了解乘客出行的满意度,现从中随机抽取人次作为样本,得到下表(单位:人次):满意度老年人中年人青年人乘坐高铁乘坐飞机乘坐高铁乘坐飞机乘坐高铁乘坐飞机10分(满意)1212022015分(一般)2362490分(不满意)106344(1)在样本中任取个,求这个出行人恰好不是青年人的概率;(2)在2018年从市到市乘坐高铁的所有成年人中,随机选取人次,记其中老年人出行的人次为.以频率作为概率,求的分布列和数学期望;(3)如果甲将要从市出发到市,那么根据表格中的数据,你建议甲是乘坐高铁还是飞机?并说明理由.19.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且b(a2+c2﹣b2)=a2ccosC+ac2cosA.(1)求角B的大小;(2)若△ABC外接圆的半径为,求△ABC面积的最大值.20.(12分)已知.(1)求不等式的解集;(2)若存在,使得成立,求实数的取值范围21.(12分)某中学的甲、乙、丙三名同学参加高校自主招生考试,每位同学彼此独立的从五所高校中任选2所.(1)求甲、乙、丙三名同学都选高校的概率;(2)若已知甲同学特别喜欢高校,他必选校,另在四校中再随机选1所;而同学乙和丙对五所高校没有偏爱,因此他们每人在五所高校中随机选2所.(i)求甲同学选高校且乙、丙都未选高校的概率;(ii)记为甲、乙、丙三名同学中选高校的人数,求随机变量的分布列及数学期望.22.(10分)设函数.(1)当时,解不等式;(2)设,且当时,不等式有解,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
根据抛物线方程求得焦点坐标和准线方程,结合定义表示出;根据抛物线与圆的位置关系和特点,求得点横坐标的取值范围,即可由的周长求得其范围.【题目详解】抛物线,则焦点,准线方程为,根据抛物线定义可得,圆,圆心为,半径为,点、分别在抛物线及圆的实线部分上运动,解得交点横坐标为2.点、分别在两个曲线上,总是平行于轴,因而两点不能重合,不能在轴上,则由圆心和半径可知,则的周长为,所以,故选:B.【题目点拨】本题考查了抛物线定义、方程及几何性质的简单应用,圆的几何性质应用,属于中档题.2、B【解题分析】
首先将五天进行分组,再对名著进行分配,根据分步乘法计数原理求得结果.【题目详解】将周一至周五分为组,每组至少天,共有:种分组方法;将四大名著安排到组中,每组种名著,共有:种分配方法;由分步乘法计数原理可得不同的阅读计划共有:种本题正确选项:【题目点拨】本题考查排列组合中的分组分配问题,涉及到分步乘法计数原理的应用,易错点是忽略分组中涉及到的平均分组问题.3、D【解题分析】
因为要对600个零件进行编号,所以编号必须是三位数,因此按要求从第6行第6列开始向右读取数据,大于600的,重复出现的舍去,直至得到第六个编号.【题目详解】从第6行第6列开始向右读取数据,编号内的数据依次为:,因为535重复出现,所以符合要求的数据依次为,故第6个数据为578.选D.【题目点拨】本题考查了随机数表表的应用,正确掌握随机数表法的使用方法是解题的关键.4、B【解题分析】
设,则,,由B,P,D三点共线,C,P,E三点共线,可知,,解得即可得出结果.【题目详解】设,则,,因为B,P,D三点共线,C,P,E三点共线,所以,,所以,.故选:B.【题目点拨】本题考查了平面向量基本定理和向量共线定理的简单应用,属于基础题.5、D【解题分析】
根据复数运算,求得,再求其对应点即可判断.【题目详解】,故其对应点的坐标为.其位于第四象限.故选:D.【题目点拨】本题考查复数的运算,以及复数对应点的坐标,属综合基础题.6、C【解题分析】
首先绘制出可行域,再绘制出目标函数,根据可行域范围求出目标函数中的取值范围.【题目详解】由题知,满足,可行域如下图所示,可知目标函数在点处取得最小值,故目标函数的最小值为,故的取值范围是.故选:D.【题目点拨】本题主要考查了线性规划中目标函数的取值范围的问题,属于基础题.7、A【解题分析】
依题意,如图以为坐标原点建立平面直角坐标系,表示出点的坐标,根据求出的坐标,求出边所在直线的方程,设,利用坐标表示,根据二次函数的性质求出最大值.【题目详解】解:依题意,如图以为坐标原点建立平面直角坐标系,由,,,,,,,因为点在线段的延长线上,设,解得,所在直线的方程为因为点在边所在直线上,故设当时故选:【题目点拨】本题考查向量的数量积,关键是建立平面直角坐标系,属于中档题.8、A【解题分析】
由计算出的取值范围,利用正弦函数的基本性质可求得函数的值域.【题目详解】,,,因此,函数的值域为.故选:A.【题目点拨】本题考查正弦型函数在区间上的值域的求解,解答的关键就是求出对象角的取值范围,考查计算能力,属于基础题.9、C【解题分析】
作,;,由题意,由二倍角公式即得解.【题目详解】由题意,,准线:,作,;,设,故,,.故选:C【题目点拨】本题考查了抛物线的性质综合,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.10、C【解题分析】
根据双曲线的标准方程即可得出该双曲线的渐近线方程.【题目详解】由题意可知,双曲线的渐近线方程是.故选:C.【题目点拨】本题考查双曲线的渐近线方程的求法,是基础题,解题时要认真审题,注意双曲线的简单性质的合理运用.11、B【解题分析】
分析:根据三角函数的图象关系进行判断即可.详解:将函数图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),
得到再将得到的图象向左平移个单位长度得到故选B.点睛:本题主要考查三角函数的图象变换,结合和的关系是解决本题的关键.12、D【解题分析】
首先把三视图转换为几何体,根据三视图的长度,进一步求出个各棱长.【题目详解】根据几何体的三视图转换为几何体为:该几何体为四棱锥体,如图所示:所以:,,.故选:D..【题目点拨】本题考查三视图和几何体之间的转换,主要考查运算能力和转换能力及思维能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、18【解题分析】
先由,可得,再结合等差数列的前项和公式求解即可.【题目详解】解:因为,所以,.故答案为:18.【题目点拨】本题考查了等差数列基本量的运算,重点考查了等差数列的前项和公式,属基础题.14、2【解题分析】
根据递推公式可考虑分析,再累加求出关于关于参数的关系,根据表达式的取值分析出,再用数学归纳法证明满足条件即可.【题目详解】因为,累加可得.若,注意到当时,,不满足对任意的正整数均有.所以.当时,证明:对任意的正整数都有.当时,成立.假设当时结论成立,即,则,即结论对也成立.由数学归纳法可知,对任意的正整数都有.综上可知,所求实数的最大值是2.故答案为:2【题目点拨】本题主要考查了根据数列的递推公式求解参数最值的问题,需要根据递推公式累加求解,同时注意结合参数的范围问题进行分析.属于难题.15、1【解题分析】
由题意先求得的值,可得,再令,可得结论.【题目详解】已知,,,,令,可得,故答案为:1.【题目点拨】本题主要考查二项式定理的应用,注意根据题意,分析所给代数式的特点,通过给二项式的赋值,求展开式的系数和,可以简便的求出答案,属于基础题.16、.【解题分析】
利用复数的运算法则首先可得出,再根据共轭复数的概念可得结果.【题目详解】∵复数满足,∴,∴,故而可得,故答案为.【题目点拨】本题考查了复数的运算法则,共轭复数的概念,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)最小正周期为,单调递增区间为;(2).【解题分析】
(1)利用三角恒等变换思想化简函数的解析式为,利用正弦型函数的周期公式可求得函数的最小正周期,解不等式可求得该函数的单调递增区间;(2)由求得,由得出或,分两种情况讨论,结合余弦定理解三角形,进行利用三角形的面积公式可求得的面积.【题目详解】(1),所以,函数的最小正周期为,由得,因此,函数的单调递增区间为;(2)由,得,或,或,,,又,,即.①当时,即,则由,,得,则,此时,的面积为;②当时,则,即,则由,解得,,.综上,的面积为.【题目点拨】本题考查正弦型函数的周期和单调区间的求解,同时也考查了三角形面积的计算,涉及余弦定理解三角形的应用,考查计算能力,属于中等题.18、(1)(2)分布列见解析,数学期望(3)建议甲乘坐高铁从市到市.见解析【解题分析】
(1)根据分层抽样的特征可以得知,样本中出行的老年人、中年人、青年人人次分别为,,,即可按照古典概型的概率计算公式计算得出;(2)依题意可知服从二项分布,先计算出随机选取人次,此人为老年人概率是,所以,即,即可求出的分布列和数学期望;(3)可以计算满意度均值来比较乘坐高铁还是飞机.【题目详解】(1)设事件:“在样本中任取个,这个出行人恰好不是青年人”为,由表可得:样本中出行的老年人、中年人、青年人人次分别为,,,所以在样本中任取个,这个出行人恰好不是青年人的概率.(2)由题意,的所有可能取值为:因为在2018年从市到市乘坐高铁的所有成年人中,随机选取人次,此人为老年人概率是,所以,,,所以随机变量的分布列为:故.(3)答案不唯一,言之有理即可.如可以从满意度的均值来分析问题,
参考答案如下:由表可知,乘坐高铁的人满意度均值为:乘坐飞机的人满意度均值为:因为,所以建议甲乘坐高铁从市到市.【题目点拨】本题主要考查了分层抽样的应用、古典概型的概率计算、以及离散型随机变量的分布列和期望的计算,解题关键是对题意的理解,概率类型的判断,属于中档题.19、(1)B(2)【解题分析】
(1)由已知结合余弦定理,正弦定理及和两角和的正弦公式进行化简可求cosB,进而可求B;(2)由已知结合正弦定理,余弦定理及基本不等式即可求解ac的范围,然后结合三角形的面积公式即可求解.【题目详解】(1)因为b(a2+c2﹣b2)=ca2cosC+ac2cosA,∴,即2bcosB=acosC+ccosA由正弦定理可得,2sinBcosB=sinAcosC+sinCcosA=sin(A+C)=sinB,因为,所以,所以B;(2)由正弦定理可得,b=2RsinB2,由余弦定理可得,b2=a2+c2﹣2accosB,即a2+c2﹣ac=4,因为a2+c2≥2ac,所以4=a2+c2﹣ac≥ac,当且仅当a=c时取等号,即ac的最大值4,所以△ABC面积S即面积的最大值.【题目点拨】本题综合考查了正弦定理,余弦定理及三角形的面积公式在求解三角形中的应用,属于中档题.20、(1).(2).【解题分析】试题分析:(Ⅰ)通过讨论x的范围,得到关于x的不等式组,解出取并集即可;(Ⅱ)求出f(x)的最大值,得到关于a的不等式,解出即可.试题解析:(1)不等式等价于或或,解得或,所以不等式的解集是;(2),,,解得实数的取值范围是.点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 详细梳理:人力资源管理师试题及答案
- 马工学与变革理论的融合试题及答案
- 2025至2030年中国三氯生行业发展研究报告
- 企业风险管理机制建立与实施
- 2025至2030年中国万用槽板市场调查研究报告
- 2025至2030年中国一次性笔盒市场分析及竞争策略研究报告
- 2025至2030年中国PS版清洗剂数据监测研究报告
- 2025至2030年中国LED桥梁灯市场分析及竞争策略研究报告
- 2025至2030年中国BT套筒数据监测研究报告
- 2025至2030年中国2头线性秤市场分析及竞争策略研究报告
- 医疗器械经营质量管理制度及工作程序-完整版
- (二模)温州市2025届高三第二次适应性考试英语试卷(含答案)+听力音频+听力原文
- 行政事业单位固定资产培训
- 6.1.2化学反应与电能 课件 2024-2025学年高一下学期化学人教版(2019)必修第二册
- 2025年云南省农业大学招聘工作人员历年自考难、易点模拟试卷(共500题附带答案详解)
- (二诊)成都市2022级2025届高中毕业班第二次诊断性检测语文试卷(含官方答案)
- 湖南省长沙市2024-2025学年九年级下学期入学考试英语试卷(含答案无听力原文及音频)
- 2025年国家会展中心上海有限责任公司招聘笔试参考题库含答案解析
- 2024国家电投集团中国电力招聘(22人)笔试参考题库附带答案详解
- 《餐厅案例》课件
- 2025年教育革新:利用AI技术打造个性化学习
评论
0/150
提交评论