![2024届贵州省贵阳市清镇北大培文学校贵州校区高三模拟卷(一)数学试题_第1页](http://file4.renrendoc.com/view11/M02/27/32/wKhkGWWS6DuATQKvAAI2wpf4usI680.jpg)
![2024届贵州省贵阳市清镇北大培文学校贵州校区高三模拟卷(一)数学试题_第2页](http://file4.renrendoc.com/view11/M02/27/32/wKhkGWWS6DuATQKvAAI2wpf4usI6802.jpg)
![2024届贵州省贵阳市清镇北大培文学校贵州校区高三模拟卷(一)数学试题_第3页](http://file4.renrendoc.com/view11/M02/27/32/wKhkGWWS6DuATQKvAAI2wpf4usI6803.jpg)
![2024届贵州省贵阳市清镇北大培文学校贵州校区高三模拟卷(一)数学试题_第4页](http://file4.renrendoc.com/view11/M02/27/32/wKhkGWWS6DuATQKvAAI2wpf4usI6804.jpg)
![2024届贵州省贵阳市清镇北大培文学校贵州校区高三模拟卷(一)数学试题_第5页](http://file4.renrendoc.com/view11/M02/27/32/wKhkGWWS6DuATQKvAAI2wpf4usI6805.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届贵州省贵阳市清镇北大培文学校贵州校区高三模拟卷(一)数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若x,y满足约束条件且的最大值为,则a的取值范围是()A. B. C. D.2.已知是虚数单位,若,,则实数()A.或 B.-1或1 C.1 D.3.年部分省市将实行“”的新高考模式,即语文、数学、英语三科必选,物理、历史二选一,化学、生物、政治、地理四选二,若甲同学选科没有偏好,且不受其他因素影响,则甲同学同时选择历史和化学的概率为A. B.C. D.4.已知直线和平面,若,则“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.不充分不必要5.数列满足,且,,则()A. B.9 C. D.76.如图,正方体的底面与正四面体的底面在同一平面上,且,若正方体的六个面所在的平面与直线相交的平面个数分别记为,则下列结论正确的是()A. B. C. D.7.若sin(α+3π2A.-12 B.-138.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为A.甲、乙、丙 B.乙、甲、丙C.丙、乙、甲 D.甲、丙、乙9.已知四棱锥,底面ABCD是边长为1的正方形,,平面平面ABCD,当点C到平面ABE的距离最大时,该四棱锥的体积为()A. B. C. D.110.设,,则“”是“”的A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件11.如下的程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为176,320,则输出的a为()A.16 B.18 C.20 D.1512.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,圆,直线PM,PN分别与圆O相切,切点为M,N,若,则的最小值为________.14.已知,则的值为______.15.在中,,.若,则_________.16.若实数x,y满足不等式组x+y-4≤0,2x-3y-8≤0,x≥1,则目标函数三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)为增强学生的法治观念,营造“学宪法、知宪法、守宪法”的良好校园氛围,某学校开展了“宪法小卫士”活动,并组织全校学生进行法律知识竞赛.现从全校学生中随机抽取50名学生,统计他们的竞赛成绩,已知这50名学生的竞赛成绩均在[50,100]内,并得到如下的频数分布表:分数段[50,60)[60,70)[70,80)[80,90)[90,100]人数51515123(1)将竞赛成绩在内定义为“合格”,竞赛成绩在内定义为“不合格”.请将下面的列联表补充完整,并判断是否有的把握认为“法律知识竞赛成绩是否合格”与“是否是高一新生”有关?合格不合格合计高一新生12非高一新生6合计(2)在(1)的前提下,按“竞赛成绩合格与否”进行分层抽样,从这50名学生中抽取5名学生,再从这5名学生中随机抽取2名学生,求这2名学生竞赛成绩都合格的概率.参考公式及数据:,其中.18.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,已知a=4,.(1)求A的余弦值;(2)求△ABC面积的最大值.19.(12分)的内角,,的对边分别为,,,已知的面积为.(1)求;(2)若,,求的周长.20.(12分)已知曲线的极坐标方程为,直线的参数方程为(为参数).(1)求曲线的直角坐标方程与直线的普通方程;(2)已知点,直线与曲线交于、两点,求.21.(12分)如图,在棱长为的正方形中,,分别为,边上的中点,现以为折痕将点旋转至点的位置,使得为直二面角.(1)证明:;(2)求与面所成角的正弦值.22.(10分)在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)写出直线的普通方程和曲线的直角坐标方程;(2)设直线与曲线相交于两点,的顶点也在曲线上运动,求面积的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
画出约束条件的可行域,利用目标函数的最值,判断a的范围即可.【题目详解】作出约束条件表示的可行域,如图所示.因为的最大值为,所以在点处取得最大值,则,即.故选:A【题目点拨】本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键.2、B【解题分析】
由题意得,,然后求解即可【题目详解】∵,∴.又∵,∴,∴.【题目点拨】本题考查复数的运算,属于基础题3、B【解题分析】
甲同学所有的选择方案共有种,甲同学同时选择历史和化学后,只需在生物、政治、地理三科中再选择一科即可,共有种选择方案,根据古典概型的概率计算公式,可得甲同学同时选择历史和化学的概率,故选B.4、B【解题分析】
由线面关系可知,不能确定与平面的关系,若一定可得,即可求出答案.【题目详解】,不能确定还是,,当时,存在,,由又可得,所以“”是“”的必要不充分条件,故选:B【题目点拨】本题主要考查了必要不充分条件,线面垂直,线线垂直的判定,属于中档题.5、A【解题分析】
先由题意可得数列为等差数列,再根据,,可求出公差,即可求出.【题目详解】数列满足,则数列为等差数列,,,,,,,故选:.【题目点拨】本题主要考查了等差数列的性质和通项公式的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.6、A【解题分析】
根据题意,画出几何位置图形,由图形的位置关系分别求得的值,即可比较各选项.【题目详解】如下图所示,平面,从而平面,易知与正方体的其余四个面所在平面均相交,∴,∵平面,平面,且与正方体的其余四个面所在平面均相交,∴,∴结合四个选项可知,只有正确.故选:A.【题目点拨】本题考查了空间几何体中直线与平面位置关系的判断与综合应用,对空间想象能力要求较高,属于中档题.7、B【解题分析】
由三角函数的诱导公式和倍角公式化简即可.【题目详解】因为sinα+3π2=3故选B【题目点拨】本题考查了三角函数的诱导公式和倍角公式,灵活掌握公式是关键,属于基础题.8、A【解题分析】
利用逐一验证的方法进行求解.【题目详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A.【题目点拨】本题将数学知识与时政结合,主要考查推理判断能力.题目有一定难度,注重了基础知识、逻辑推理能力的考查.9、B【解题分析】
过点E作,垂足为H,过H作,垂足为F,连接EF.因为平面ABE,所以点C到平面ABE的距离等于点H到平面ABE的距离.设,将表示成关于的函数,再求函数的最值,即可得答案.【题目详解】过点E作,垂足为H,过H作,垂足为F,连接EF.因为平面平面ABCD,所以平面ABCD,所以.因为底面ABCD是边长为1的正方形,,所以.因为平面ABE,所以点C到平面ABE的距离等于点H到平面ABE的距离.易证平面平面ABE,所以点H到平面ABE的距离,即为H到EF的距离.不妨设,则,.因为,所以,所以,当时,等号成立.此时EH与ED重合,所以,.故选:B.【题目点拨】本题考查空间中点到面的距离的最值,考查函数与方程思想、转化与化归思想,考查空间想象能力和运算求解能力,求解时注意辅助线及面面垂直的应用.10、A【解题分析】
根据对数的运算分别从充分性和必要性去证明即可.【题目详解】若,,则,可得;若,可得,无法得到,所以“”是“”的充分而不必要条件.所以本题答案为A.【题目点拨】本题考查充要条件的定义,判断充要条件的方法是:①若为真命题且为假命题,则命题p是命题q的充分不必要条件;②若为假命题且为真命题,则命题p是命题q的必要不充分条件;③若为真命题且为真命题,则命题p是命题q的充要条件;④若为假命题且为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.11、A【解题分析】
根据题意可知最后计算的结果为的最大公约数.【题目详解】输入的a,b分别为,,根据流程图可知最后计算的结果为的最大公约数,按流程图计算,,,,,,,易得176和320的最大公约数为16,故选:A.【题目点拨】本题考查的是利用更相减损术求两个数的最大公约数,难度较易.12、C【解题分析】
画出几何体的直观图,利用三视图的数据求解几何体的表面积即可.【题目详解】解:几何体的直观图如图,是正方体的一部分,P−ABC,正方体的棱长为2,
该几何体的表面积:.故选C.【题目点拨】本题考查三视图求解几何体的直观图的表面积,判断几何体的形状是解题的关键.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
由可知R为中点,设,由过切点的切线方程即可求得,,代入,,则在直线上,即可得方程为,将,代入化简可得,则直线过定点,由则点在以为直径的圆上,则.即可求得.【题目详解】如图,由可知R为MN的中点,所以,,设,则切线PM的方程为,即,同理可得,因为PM,PN都过,所以,,所以在直线上,从而直线MN方程为,因为,所以,即直线MN方程为,所以直线MN过定点,所以R在以OQ为直径的圆上,所以.故答案为:.【题目点拨】本题考查直线和圆的位置关系,考查圆的切线方程,定点和圆上动点距离的最值问题,考查学生的数形结合能力和计算能力,难度较难.14、【解题分析】
先求,再根据的范围求出即可.【题目详解】由题可知,故.故答案为:.【题目点拨】本题考查分段函数函数值的求解,涉及对数的运算,属基础题.15、【解题分析】分析:首先设出相应的直角边长,利用余弦勾股定理得到相应的斜边长,之后应用余弦定理得到直角边长之间的关系,从而应用正切函数的定义,对边比临边,求得对应角的正切值,即可得结果.详解:根据题意,设,则,根据,得,由勾股定理可得,根据余弦定理可得,化简整理得,即,解得,所以,故答案是.点睛:该题考查的是有关解三角形的问题,在解题的过程中,注意分析要求对应角的正切值,需要求谁,而题中所给的条件与对应的结果之间有什么样的连线,设出直角边长,利用所给的角的余弦值,利用余弦定理得到相应的等量关系,求得最后的结果.16、12【解题分析】
画出约束条件的可行域,求出最优解,即可求解目标函数的最大值.【题目详解】根据约束条件画出可行域,如下图,由x+y-4=02x-3y-8=0,解得目标函数y=3x-z,当y=3x-z过点(4,0)时,z有最大值,且最大值为12.故答案为:12.【题目点拨】本题考查线性规划的简单应用,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解题分析】
(1)补充完整的列联表如下:合格不合格合计高一新生121426非高一新生18624合计302050则的观测值,所以有的把握认为“法律知识竞赛成绩是否合格”与“是否是高一新生”有关.(2)抽取的5名学生中竞赛成绩合格的有名学生,记为,竞赛成绩不合格的有名学生,记为,从这5名学生中随机抽取2名学生的基本事件有:,共10种,这2名学生竞赛成绩都合格的基本事件有:,共3种,所以这2名学生竞赛成绩都合格的概率为.18、(1);(2)【解题分析】
(1)根据正弦定理化简得到,故,得到答案.(2)计算,再利用面积公式计算得到答案.【题目详解】(1),则,即,故,,故.(2),故,故.当时等号成立.,故,,故△ABC面积的最大值为.【题目点拨】本题考查了正弦定理,面积公式,均值不等式,意在考查学生的综合应用能力.19、(1)(2)【解题分析】
(1)根据三角形面积公式和正弦定理可得答案;(2)根据两角余弦公式可得,即可求出,再根据正弦定理可得,根据余弦定理即可求出,问题得以解决.【题目详解】(1)由三角形的面积公式可得,,由正弦定理可得,,;(2),,,,,则由,可得:,由,可得:,,可得:,经检验符合题意,三角形的周长.(实际上可解得,符合三边关系).【题目点拨】本题考查了三角形的面积公式、两角和的余弦公式、诱导公式,考查正弦定理,余弦定理在解三角形中的综合应用,考查了学生的运算能力,考查了转化思想,属于中档题.20、(1).(2)【解题分析】
(1)根据极坐标与直角坐标互化公式,以及消去参数,即可求解;(2)设两点对应的参数分别为,,将直线的参数方程代入曲线方程,结合根与系数的关系,即可求解.【题目详解】(1)对于曲线的极坐标方程为,可得,又由,可得,即,所以曲线的普通方程为.由直线的参数方程为(为参数),消去参数可得,即直线的方程为,即.(2)设两点对应的参数分别为,,将直线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023三年级英语上册 Module 1 Getting to know you Unit 3 Are you Kitty说课稿 牛津沪教版(三起)
- 21《古诗三首》说课稿-2024-2025学年语文四年级上册统编版001
- 6《摸一摸》说课稿-2024-2025学年科学一年级上册青岛版
- 2024-2025学年高中生物 第3章 植物的激素调节 第1节 植物生长素的发现说课稿 新人教版必修3001
- 2024年五年级英语下册 Module 7 Unit 2 I will be home at seven oclock说课稿 外研版(三起)
- 2025住宅装修物业管理合同(合同范本)
- 8《池子与河流》(说课稿)-2023-2024学年统编版语文三年级下册
- 2025锅炉拆除安全施工合同
- 2025有关电梯广告的合同范本
- Unit 6 Disaster and Hope Understanding ideas 说课稿-2023-2024学年外研版高中英语(2019)必修第三册
- 柴油垫资合同模板
- GB/T 44489-2024高级辅助驾驶地图审查要求
- 2024-2030年中国体外除颤器行业市场发展趋势与前景展望战略分析报告
- 2024-2030年中国人力资源行业市场发展前瞻及投资战略研究报告
- 2024-2030年中国桦树汁行业市场发展趋势与前景展望战略分析报告
- 2024年中考物理真题分类汇编(全国)(第一期)专题12 机械能及能量守恒定律(第01期)(解析版)
- 全册(教案)外研版(一起)英语四年级下册
- 偏差行为、卓越一生3.0版
- 国网浙江电科院:2024浙江工商业储能政策及收益分析报告
- 中国儿童幽门螺杆菌感染诊治专家共识2022
- JJG 4-2015钢卷尺行业标准
评论
0/150
提交评论