版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
远程授课山西省大同市第一中学2024届高三摸底考试数学试题试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线的两条渐近线与抛物线的准线分别交于点、,O为坐标原点.若双曲线的离心率为2,三角形AOB的面积为,则p=().A.1 B. C.2 D.32.已知椭圆:的左、右焦点分别为,,过的直线与轴交于点,线段与交于点.若,则的方程为()A. B. C. D.3.已知函数则函数的图象的对称轴方程为()A. B.C. D.4.已知双曲线C:()的左、右焦点分别为,过的直线l与双曲线C的左支交于A、B两点.若,则双曲线C的渐近线方程为()A. B. C. D.5.已知等差数列中,,则()A.20 B.18 C.16 D.146.某校在高一年级进行了数学竞赛(总分100分),下表为高一·一班40名同学的数学竞赛成绩:555759616864625980889895607388748677799497100999789818060796082959093908580779968如图的算法框图中输入的为上表中的学生的数学竞赛成绩,运行相应的程序,输出,的值,则()A.6 B.8 C.10 D.127.已知不重合的平面和直线,则“”的充分不必要条件是()A.内有无数条直线与平行 B.且C.且 D.内的任何直线都与平行8.如图所示,正方体的棱,的中点分别为,,则直线与平面所成角的正弦值为()A. B. C. D.9.已知正方体的棱长为1,平面与此正方体相交.对于实数,如果正方体的八个顶点中恰好有个点到平面的距离等于,那么下列结论中,一定正确的是A. B.C. D.10.执行如图所示的程序框图,如果输入,则输出属于()A. B. C. D.11.已知函数(),若函数有三个零点,则的取值范围是()A. B.C. D.12.如图,长方体中,,,点T在棱上,若平面.则()A.1 B. C.2 D.二、填空题:本题共4小题,每小题5分,共20分。13.已知向量=(1,2),=(-3,1),则=______.14.设定义域为的函数满足,则不等式的解集为__________.15.已知一组数据,1,0,,的方差为10,则________16.设为数列的前项和,若,,且,,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(1)求的值;(2)令在上最小值为,证明:.18.(12分)已知函数,其中e为自然对数的底数.(1)讨论函数的单调性;(2)用表示中较大者,记函数.若函数在上恰有2个零点,求实数a的取值范围.19.(12分)在中,角的对边分别为,且满足.(Ⅰ)求角的大小;(Ⅱ)若的面积为,,求和的值.20.(12分)某公司欲投资一新型产品的批量生产,预计该产品的每日生产总成本价格)(单位:万元)是每日产量(单位:吨)的函数:.(1)求当日产量为吨时的边际成本(即生产过程中一段时间的总成本对该段时间产量的导数);(2)记每日生产平均成本求证:;(3)若财团每日注入资金可按数列(单位:亿元)递减,连续注入天,求证:这天的总投入资金大于亿元.21.(12分)定义:若数列满足所有的项均由构成且其中有个,有个,则称为“﹣数列”.(1)为“﹣数列”中的任意三项,则使得的取法有多少种?(2)为“﹣数列”中的任意三项,则存在多少正整数对使得且的概率为.22.(10分)移动支付(支付宝及微信支付)已经渐渐成为人们购物消费的一种支付方式,为调查市民使用移动支付的年龄结构,随机对100位市民做问卷调查得到列联表如下:(1)将上列联表补充完整,并请说明在犯错误的概率不超过0.01的前提下,认为支付方式与年龄是否有关?(2)在使用移动支付的人群中采用分层抽样的方式抽取10人做进一步的问卷调查,从这10人随机中选出3人颁发参与奖励,设年龄都低于35岁(含35岁)的人数为,求的分布列及期望.(参考公式:(其中)
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】试题分析:抛物线的准线为,双曲线的离心率为2,则,,渐近线方程为,求出交点,,,则;选C考点:1.双曲线的渐近线和离心率;2.抛物线的准线方程;2、D【解题分析】
由题可得,所以,又,所以,得,故可得椭圆的方程.【题目详解】由题可得,所以,又,所以,得,,所以椭圆的方程为.故选:D【题目点拨】本题主要考查了椭圆的定义,椭圆标准方程的求解.3、C【解题分析】
,将看成一个整体,结合的对称性即可得到答案.【题目详解】由已知,,令,得.故选:C.【题目点拨】本题考查余弦型函数的对称性的问题,在处理余弦型函数的性质时,一般采用整体法,结合三角函数的性质,是一道容易题.4、D【解题分析】
设,利用余弦定理,结合双曲线的定义进行求解即可.【题目详解】设,由双曲线的定义可知:因此再由双曲线的定义可知:,在三角形中,由余弦定理可知:,因此双曲线的渐近线方程为:.故选:D【题目点拨】本题考查了双曲线的定义的应用,考查了余弦定理的应用,考查了双曲线的渐近线方程,考查了数学运算能力.5、A【解题分析】
设等差数列的公差为,再利用基本量法与题中给的条件列式求解首项与公差,进而求得即可.【题目详解】设等差数列的公差为.由得,解得.所以.故选:A【题目点拨】本题主要考查了等差数列的基本量求解,属于基础题.6、D【解题分析】
根据程序框图判断出的意义,由此求得的值,进而求得的值.【题目详解】由题意可得的取值为成绩大于等于90的人数,的取值为成绩大于等于60且小于90的人数,故,,所以.故选:D【题目点拨】本小题考查利用程序框图计算统计量等基础知识;考查运算求解能力,逻辑推理能力和数学应用意识.7、B【解题分析】
根据充分不必要条件和直线和平面,平面和平面的位置关系,依次判断每个选项得到答案.【题目详解】A.内有无数条直线与平行,则相交或,排除;B.且,故,当,不能得到且,满足;C.且,,则相交或,排除;D.内的任何直线都与平行,故,若,则内的任何直线都与平行,充要条件,排除.故选:.【题目点拨】本题考查了充分不必要条件和直线和平面,平面和平面的位置关系,意在考查学生的综合应用能力.8、C【解题分析】
以D为原点,DA,DC,DD1分别为轴,建立空间直角坐标系,由向量法求出直线EF与平面AA1D1D所成角的正弦值.【题目详解】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1的棱长为2,则,,,取平面的法向量为,设直线EF与平面AA1D1D所成角为θ,则sinθ=|,直线与平面所成角的正弦值为.故选C.【题目点拨】本题考查了线面角的正弦值的求法,也考查数形结合思想和向量法的应用,属于中档题.9、B【解题分析】
此题画出正方体模型即可快速判断m的取值.【题目详解】如图(1)恰好有3个点到平面的距离为;如图(2)恰好有4个点到平面的距离为;如图(3)恰好有6个点到平面的距离为.所以本题答案为B.【题目点拨】本题以空间几何体为载体考查点,面的位置关系,考查空间想象能力,考查了学生灵活应用知识分析解决问题的能力和知识方法的迁移能力,属于难题.10、B【解题分析】
由题意,框图的作用是求分段函数的值域,求解即得解.【题目详解】由题意可知,框图的作用是求分段函数的值域,当;当综上:.故选:B【题目点拨】本题考查了条件分支的程序框图,考查了学生逻辑推理,分类讨论,数学运算的能力,属于基础题.11、A【解题分析】
分段求解函数零点,数形结合,分类讨论即可求得结果.【题目详解】作出和,的图像如下所示:函数有三个零点,等价于与有三个交点,又因为,且由图可知,当时与有两个交点,故只需当时,与有一个交点即可.若当时,时,显然𝑦=𝑓(𝑥)与𝑦=4|𝑥|有一个交点𝐵,故满足题意;时,显然𝑦=𝑓(𝑥)与𝑦=4|𝑥|没有交点,故不满足题意;时,显然𝑦=𝑓(𝑥)与𝑦=4|𝑥|也没有交点,故不满足题意;时,显然与有一个交点,故满足题意.综上所述,要满足题意,只需.故选:A.【题目点拨】本题考查由函数零点的个数求参数范围,属中档题.12、D【解题分析】
根据线面垂直的性质,可知;结合即可证明,进而求得.由线段关系及平面向量数量积定义即可求得.【题目详解】长方体中,,点T在棱上,若平面.则,则,所以,则,所以,故选:D.【题目点拨】本题考查了直线与平面垂直的性质应用,平面向量数量积的运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、-6【解题分析】
由可求,然后根据向量数量积的坐标表示可求.【题目详解】∵=(1,2),=(-3,1),∴=(-4,-1),则=1×(-4)+2×(-1)=-6故答案为-6【题目点拨】本题主要考查了向量数量积的坐标表示,属于基础试题.14、【解题分析】
根据条件构造函数F(x),求函数的导数,利用函数的单调性即可得到结论.【题目详解】设F(x),则F′(x),∵,∴F′(x)>0,即函数F(x)在定义域上单调递增.∵∴,即F(x)<F(2x)∴,即x>1∴不等式的解为故答案为:【题目点拨】本题主要考查函数单调性的判断和应用,根据条件构造函数是解决本题的关键.15、7或【解题分析】
依据方差公式列出方程,解出即可.【题目详解】,1,0,,的平均数为,所以解得或.【题目点拨】本题主要考查方差公式的应用.16、【解题分析】
由题可得,解得,所以,,上述两式相减可得,即,因为,所以,即,所以数列是以为首项,为公差的等差数列,所以.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析.【解题分析】
(1)将转化为对任意恒成立,令,故只需,即可求出的值;(2)由(1)知,可得,令,可证,使得,从而可确定在上单调递减,在上单调递增,进而可得,即,即可证出.【题目详解】函数的定义域为,因为对任意恒成立,即对任意恒成立,令,则,当时,,故在上单调递增,又,所以当时,,不符合题意;当时,令得,当时,;当时,,所以在上单调递增,在上单调递减,所以,所以要使在时恒成立,则只需,即,令,,所以,当时,;当时,,所以在单调递减,在上单调递增,所以,即,又,所以,故满足条件的的值只有(2)由(1)知,所以,令,则,当,时,即在上单调递增;又,,所以,使得,当时,;当时,,即在上单调递减,在上单调递增,且所以,即,所以,即.【题目点拨】本题主要考查利用导数法求函数的最值及恒成立问题处理方法,第(2)问通过最值问题深化对函数的单调性的考查,同时考查转化与化归的思想,属于中档题.18、(1)函数的单调递增区间为和,单调递减区间为;(2).【解题分析】
(1)由题可得,结合的范围判断的正负,即可求解;(2)结合导数及函数的零点的判定定理,分类讨论进行求解【题目详解】(1),①当时,,∴函数在内单调递增;②当时,令,解得或,当或时,,则单调递增,当时,,则单调递减,∴函数的单调递增区间为和,单调递减区间为(2)(Ⅰ)当时,所以在上无零点;(Ⅱ)当时,,①若,即,则是的一个零点;②若,即,则不是的零点(Ⅲ)当时,,所以此时只需考虑函数在上零点的情况,因为,所以①当时,在上单调递增。又,所以(ⅰ)当时,在上无零点;(ⅱ)当时,,又,所以此时在上恰有一个零点;②当时,令,得,由,得;由,得,所以在上单调递减,在上单调递增,因为,,所以此时在上恰有一个零点,综上,【题目点拨】本题考查利用导数求函数单调区间,考查利用导数处理零点个数问题,考查运算能力,考查分类讨论思想19、(Ⅰ);(Ⅱ),.【解题分析】
(Ⅰ)运用正弦定理和二角和的正弦公式,化简,即可求出角的大小;(Ⅱ)通过面积公式和,可以求出,这样用余弦定理可以求出,用余弦定理求出,根据同角的三角函数关系,可以求出,这样可以求出,最后利用二角差的余弦公式求出的值.【题目详解】(Ⅰ)由正弦定理可知:,已知,所以,,所以有.(Ⅱ),由余弦定理可知:,,.【题目点拨】本题考查了正弦定理、余弦定理、面积公式、二倍角公式、二角差的余弦公式以及同角的三角函数关系,考查了运算能力.20、(1);(2)证明见解析;(3)证明见解析.【解题分析】
(1)求得函数的导函数,由此求得求当日产量为吨时的边际成本.(2)将所要证明不等式转化为证明,构造函数,利用导数证得,由此证得不等式成立.(3)利用(2)的结论,判断出,由此结合对数运算,证得.【题目详解】(1)因为所以当时,(2)要证,只需证,即证,设则所以在上单调递减,所以所以,即;(3)因为又由(2)知,当时,所以所以所以【题目点拨】本小题主要考查导数的计算,考查利用导数证明不等式,考查放缩法证明数列不等式,属于难题.21、(1)16;(2)115.【解题分析】
(1)易得使得的情况只有“”,“”两种,再根据组合的方法求解两种情况分别的情况数再求和即可.(2)易得“”共有种,“”共有种.再根据古典概型的方法可知,利用组合数的计算公式可得,当时根据题意有,共个;当时求得,再根据换元根据整除的方法求解满足的正整数对即可.【题目详解】解:(1)三个数乘积为有两种情况:“”,“”,其中“”共有:种,“”共有:种,利用分类计数原理得:为“﹣数列”中的任意三项,则使得的取法有:种.(2)与(1)同理,“”共有种,“”共有种,而在“﹣数列”中任取三项共有种,根据古典概型有:,再根据组合数的计算公式能得到:,时,应满足,,共个,时,应满足,视
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 简单的服装租赁合同
- 2024年度二手房交易房屋权利瑕疵合同
- 装修合同范本版完整版
- 泰国借款合同范本
- 智能家居设备研发与生产制造合同(04版)
- 劳动合同精简版范本
- 基于云计算的2024年度企业资源规划(ERP)系统建设合同
- 年度美食节策划与宣传推广合同
- 水电劳务合同范本
- 基于BIM技术的2024年度沉井施工协调管理合同
- 汽轮机滤油方案
- 小学数学专题讲座:小学数学计算能力的培养课件
- 《高三上学期期中家长会》课件
- 《药品储存与养护》考试复习题库(含答案)
- 《美丽文字民族瑰宝》课件
- 如何有效的提高班级整体成绩做一名的班主任课件
- 知识竞赛pptPPT(完美版)
- 产品包装、防护和交付管理规定
- 施工现场扬尘防治资料 全套
- DB12-T1059-2021行洪河道堤防工程安全监测技术规程
- 销售人员心态培训ppt
评论
0/150
提交评论