




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届北京市顺义牛栏山一中高三下学期期中练习数学试题理试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.党的十九大报告明确提出:在共享经济等领域培育增长点、形成新动能.共享经济是公众将闲置资源通过社会化平台与他人共享,进而获得收入的经济现象.为考察共享经济对企业经济活跃度的影响,在四个不同的企业各取两个部门进行共享经济对比试验,根据四个企业得到的试验数据画出如下四个等高条形图,最能体现共享经济对该部门的发展有显著效果的图形是()A. B.C. D.2.已知定义在上的函数,,,,则,,的大小关系为()A. B. C. D.3.一小商贩准备用元钱在一批发市场购买甲、乙两种小商品,甲每件进价元,乙每件进价元,甲商品每卖出去件可赚元,乙商品每卖出去件可赚元.该商贩若想获取最大收益,则购买甲、乙两种商品的件数应分别为()A.甲件,乙件 B.甲件,乙件 C.甲件,乙件 D.甲件,乙件4.已知定义在上的函数满足,且当时,,则方程的最小实根的值为()A. B. C. D.5.设等比数列的前项和为,则“”是“”的()A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要6.用电脑每次可以从区间内自动生成一个实数,且每次生成每个实数都是等可能性的.若用该电脑连续生成3个实数,则这3个实数都小于的概率为()A. B. C. D.7.的展开式中的常数项为()A.-60 B.240 C.-80 D.1808.中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,指数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“数”必须排在第三节,且“射”和“御”两门课程相邻排课,则“六艺”课程讲座不同的排课顺序共有()A.12种 B.24种 C.36种 D.48种9.如图在直角坐标系中,过原点作曲线的切线,切点为,过点分别作、轴的垂线,垂足分别为、,在矩形中随机选取一点,则它在阴影部分的概率为()A. B. C. D.10.已知函数,若对任意,都有成立,则实数的取值范围是()A. B. C. D.11.《易·系辞上》有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如图,白圈为阳数,黑点为阴数.若从这10个数中任取3个数,则这3个数中至少有2个阳数且能构成等差数列的概率为()A. B. C. D.12.若函数有且只有4个不同的零点,则实数的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.曲线f(x)=(x2+x)lnx在点(1,f(1))处的切线方程为____.14.若幂函数的图象经过点,则其单调递减区间为_______.15.若实数满足约束条件,设的最大值与最小值分别为,则_____.16.已知数列满足:点在直线上,若使、、构成等比数列,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)解不等式;(2)使得,求实数的取值范围.18.(12分)某企业为了了解该企业工人组装某产品所用时间,对每个工人组装一个该产品的用时作了记录,得到大量统计数据.从这些统计数据中随机抽取了个数据作为样本,得到如图所示的茎叶图(单位:分钟).若用时不超过(分钟),则称这个工人为优秀员工.(1)求这个样本数据的中位数和众数;(2)以这个样本数据中优秀员工的频率作为概率,任意调查名工人,求被调查的名工人中优秀员工的数量分布列和数学期望.19.(12分)高铁和航空的飞速发展不仅方便了人们的出行,更带动了我国经济的巨大发展.据统计,在2018年这一年内从市到市乘坐高铁或飞机出行的成年人约为万人次.为了解乘客出行的满意度,现从中随机抽取人次作为样本,得到下表(单位:人次):满意度老年人中年人青年人乘坐高铁乘坐飞机乘坐高铁乘坐飞机乘坐高铁乘坐飞机10分(满意)1212022015分(一般)2362490分(不满意)106344(1)在样本中任取个,求这个出行人恰好不是青年人的概率;(2)在2018年从市到市乘坐高铁的所有成年人中,随机选取人次,记其中老年人出行的人次为.以频率作为概率,求的分布列和数学期望;(3)如果甲将要从市出发到市,那么根据表格中的数据,你建议甲是乘坐高铁还是飞机?并说明理由.20.(12分)已知函数(,为自然对数的底数),.(1)若有两个零点,求实数的取值范围;(2)当时,对任意的恒成立,求实数的取值范围.21.(12分)我国在2018年社保又出新的好消息,之前流动就业人员跨地区就业后,社保转移接续的手续往往比较繁琐,费时费力.社保改革后将简化手续,深得流动就业人员的赞誉.某市社保局从2018年办理社保的人员中抽取300人,得到其办理手续所需时间(天)与人数的频数分布表:时间人数156090754515(1)若300名办理社保的人员中流动人员210人,非流动人员90人,若办理时间超过4天的人员里非流动人员有60人,请完成办理社保手续所需时间与是否流动人员的列联表,并判断是否有95%的把握认为“办理社保手续所需时间与是否流动人员”有关.列联表如下流动人员非流动人员总计办理社保手续所需时间不超过4天办理社保手续所需时间超过4天60总计21090300(2)为了改进工作作风,提高效率,从抽取的300人中办理时间为流动人员中利用分层抽样,抽取12名流动人员召开座谈会,其中3人要求交书面材料,3人中办理的时间为的人数为,求出分布列及期望值.附:0.100.050.0100.0052.7063.8416.6357.87922.(10分)已知,,分别为内角,,的对边,且.(1)证明:;(2)若的面积,,求角.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】根据四个列联表中的等高条形图可知,图中D中共享与不共享的企业经济活跃度的差异最大,它最能体现共享经济对该部门的发展有显著效果,故选D.2、D【解题分析】
先判断函数在时的单调性,可以判断出函数是奇函数,利用奇函数的性质可以得到,比较三个数的大小,然后根据函数在时的单调性,比较出三个数的大小.【题目详解】当时,,函数在时,是增函数.因为,所以函数是奇函数,所以有,因为,函数在时,是增函数,所以,故本题选D.【题目点拨】本题考查了利用函数的单调性判断函数值大小问题,判断出函数的奇偶性、单调性是解题的关键.3、D【解题分析】
由题意列出约束条件和目标函数,数形结合即可解决.【题目详解】设购买甲、乙两种商品的件数应分别,利润为元,由题意,画出可行域如图所示,显然当经过时,最大.故选:D.【题目点拨】本题考查线性目标函数的线性规划问题,解决此类问题要注意判断,是否是整数,是否是非负数,并准确的画出可行域,本题是一道基础题.4、C【解题分析】
先确定解析式求出的函数值,然后判断出方程的最小实根的范围结合此时的,通过计算即可得到答案.【题目详解】当时,,所以,故当时,,所以,而,所以,又当时,的极大值为1,所以当时,的极大值为,设方程的最小实根为,,则,即,此时令,得,所以最小实根为411.故选:C.【题目点拨】本题考查函数与方程的根的最小值问题,涉及函数极大值、函数解析式的求法等知识,本题有一定的难度及高度,是一道有较好区分度的压轴选这题.5、A【解题分析】
首先根据等比数列分别求出满足,的基本量,根据基本量的范围即可确定答案.【题目详解】为等比数列,若成立,有,因为恒成立,故可以推出且,若成立,当时,有,当时,有,因为恒成立,所以有,故可以推出,,所以“”是“”的充分不必要条件.故选:A.【题目点拨】本题主要考查了等比数列基本量的求解,充分必要条件的集合关系,属于基础题.6、C【解题分析】
由几何概型的概率计算,知每次生成一个实数小于1的概率为,结合独立事件发生的概率计算即可.【题目详解】∵每次生成一个实数小于1的概率为.∴这3个实数都小于1的概率为.故选:C.【题目点拨】本题考查独立事件同时发生的概率,考查学生基本的计算能力,是一道容易题.7、D【解题分析】
求的展开式中的常数项,可转化为求展开式中的常数项和项,再求和即可得出答案.【题目详解】由题意,中常数项为,中项为,所以的展开式中的常数项为:.故选:D【题目点拨】本题主要考查二项式定理的应用和二项式展开式的通项公式,考查学生计算能力,属于基础题.8、C【解题分析】
根据“数”排在第三节,则“射”和“御”两门课程相邻有3类排法,再考虑两者的顺序,有种,剩余的3门全排列,即可求解.【题目详解】由题意,“数”排在第三节,则“射”和“御”两门课程相邻时,可排在第1节和第2节或第4节和第5节或第5节和第6节,有3种,再考虑两者的顺序,有种,剩余的3门全排列,安排在剩下的3个位置,有种,所以“六艺”课程讲座不同的排课顺序共有种不同的排法.故选:C.【题目点拨】本题主要考查了排列、组合的应用,其中解答中认真审题,根据题设条件,先排列有限制条件的元素是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.9、A【解题分析】
设所求切线的方程为,联立,消去得出关于的方程,可得出,求出的值,进而求得切点的坐标,利用定积分求出阴影部分区域的面积,然后利用几何概型概率公式可求得所求事件的概率.【题目详解】设所求切线的方程为,则,联立,消去得①,由,解得,方程①为,解得,则点,所以,阴影部分区域的面积为,矩形的面积为,因此,所求概率为.故选:A.【题目点拨】本题考查定积分的计算以及几何概型,同时也涉及了二次函数的切线方程的求解,考查计算能力,属于中等题.10、D【解题分析】
先将所求问题转化为对任意恒成立,即得图象恒在函数图象的上方,再利用数形结合即可解决.【题目详解】由得,由题意函数得图象恒在函数图象的上方,作出函数的图象如图所示过原点作函数的切线,设切点为,则,解得,所以切线斜率为,所以,解得.故选:D.【题目点拨】本题考查导数在不等式恒成立中的应用,考查了学生转化与化归思想以及数形结合的思想,是一道中档题.11、C【解题分析】
先根据组合数计算出所有的情况数,再根据“3个数中至少有2个阳数且能构成等差数列”列举得到满足条件的情况,由此可求解出对应的概率.【题目详解】所有的情况数有:种,3个数中至少有2个阳数且能构成等差数列的情况有:,共种,所以目标事件的概率.故选:C.【题目点拨】本题考查概率与等差数列的综合,涉及到背景文化知识,难度一般.求解该类问题可通过古典概型的概率求解方法进行分析;当情况数较多时,可考虑用排列数、组合数去计算.12、B【解题分析】
由是偶函数,则只需在上有且只有两个零点即可.【题目详解】解:显然是偶函数所以只需时,有且只有2个零点即可令,则令,递减,且递增,且时,有且只有2个零点,只需故选:B【题目点拨】考查函数性质的应用以及根据零点个数确定参数的取值范围,基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
求函数的导数,利用导数的几何意义即可求出切线方程.【题目详解】解:∵,
∴,
则,
又,即切点坐标为(1,0),
则函数在点(1,f(1))处的切线方程为,
即,
故答案为:.【题目点拨】本题主要考查导数的几何意义,根据导数和切线斜率之间的关系是解决本题的关键.14、【解题分析】
利用待定系数法求出幂函数的解析式,再求出的单调递减区间.【题目详解】解:幂函数的图象经过点,则,解得;所以,其中;所以的单调递减区间为.故答案为:.【题目点拨】本题考查了幂函数的图象与性质的应用问题,属于基础题.15、【解题分析】
画出可行域,平移基准直线到可行域边界位置,由此求得最大值以及最小值,进而求得的比值.【题目详解】画出可行域如下图所示,由图可知,当直线过点时,取得最大值7;过点时,取得最小值2,所以.【题目点拨】本小题主要考查利用线性规划求线性目标函数的最值.这种类型题目的主要思路是:首先根据题目所给的约束条件,画出可行域;其次是求得线性目标函数的基准函数;接着画出基准函数对应的基准直线;然后通过平移基准直线到可行域边界的位置;最后求出所求的最值.属于基础题.16、13【解题分析】
根据点在直线上可求得,由等比中项的定义可构造方程求得结果.【题目详解】在上,,成等比数列,,即,解得:.故答案为:.【题目点拨】本题考查根据三项成等比数列求解参数值的问题,涉及到等比中项的应用,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)或.【解题分析】
(1)分段讨论得出函数的解析式,再分范围解不等式,可得解集;(2)先求出函数的最小值,再建立关于的不等式,可求得实数的取值范围.【题目详解】(1)因为,所以当时,;当时,无解;当时,;综上,不等式的解集为;(2),又,或.【题目点拨】本题考查分段函数,绝对值不等式的解法,以及关于函数的存在和任意的问题,属于中档题.18、(1)43,47;(2)分布列见解析,.【解题分析】
(1)根据茎叶图即可得到中位数和众数;(2)根据数据可得任取一名优秀员工的概率为,故,写出分布列即可得解.【题目详解】(1)中位数为,众数为.(2)被调查的名工人中优秀员工的数量,任取一名优秀员工的概率为,故,,,的分布列如下:故【题目点拨】此题考查根据茎叶图求众数和中位数,求离散型随机变量分布列,根据分布列求解期望,关键在于准确求解概率,若能准确识别二项分布对于解题能够起到事半功倍的作用.19、(1)(2)分布列见解析,数学期望(3)建议甲乘坐高铁从市到市.见解析【解题分析】
(1)根据分层抽样的特征可以得知,样本中出行的老年人、中年人、青年人人次分别为,,,即可按照古典概型的概率计算公式计算得出;(2)依题意可知服从二项分布,先计算出随机选取人次,此人为老年人概率是,所以,即,即可求出的分布列和数学期望;(3)可以计算满意度均值来比较乘坐高铁还是飞机.【题目详解】(1)设事件:“在样本中任取个,这个出行人恰好不是青年人”为,由表可得:样本中出行的老年人、中年人、青年人人次分别为,,,所以在样本中任取个,这个出行人恰好不是青年人的概率.(2)由题意,的所有可能取值为:因为在2018年从市到市乘坐高铁的所有成年人中,随机选取人次,此人为老年人概率是,所以,,,所以随机变量的分布列为:故.(3)答案不唯一,言之有理即可.如可以从满意度的均值来分析问题,
参考答案如下:由表可知,乘坐高铁的人满意度均值为:乘坐飞机的人满意度均值为:因为,所以建议甲乘坐高铁从市到市.【题目点拨】本题主要考查了分层抽样的应用、古典概型的概率计算、以及离散型随机变量的分布列和期望的计算,解题关键是对题意的理解,概率类型的判断,属于中档题.20、(1);(2)【解题分析】
(1)将有两个零点转化为方程有两个相异实根,令求导,利用其单调性和极值求解;(2)将问题转化为对一切恒成立,令,求导,研究单调性,求出其最值即可得结果.【题目详解】(1)有两个零点关于的方程有两个相异实根由,知有两个零点有两个相异实根.令,则,由得:,由得:,在单调递增,在单调递减,又当时,,当时,当时,有两个零点时,实数的取值范围为;(2)当时,,原命题等价于对一切恒成立对一切恒成立.令令
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业人事聘用合同范本
- 出租保安服装合同范本
- 先打款后开票合同范本
- 东莞企业劳务合同范本
- 儿童游泳班合同范本
- 上海宝冶合同范本
- 出售银河新村物业合同范本
- 冷冻肉供货合同范本
- 单位车辆清洁合同范本
- 加工胶带合同范本
- 2025年企业法务顾问聘用协议范本
- 教育部人文社科 申请书
- 无菌手术台铺置的细节管理
- 《康复评定技术》课件-第五章 运动控制
- 议论文8(试题+审题+范文+点评+素材)-2025年高考语文写作复习
- 【理特咨询】2024生成式人工智能GenAI在生物医药大健康行业应用进展报告
- 2025新人教版英语七年级下单词默写表(小学部分)
- 2025年春新外研版(三起)英语三年级下册课件 Unit6第1课时Startup
- 2025江苏苏州高新区狮山商务创新区下属国企业招聘9人高频重点提升(共500题)附带答案详解
- 《蒙牛集团实施财务共享过程中存在的问题及优化建议探析》8800字(论文)
- 平抛运动的经典例题
评论
0/150
提交评论