版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年甘肃省武威市凉州区数学九上期末综合测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,已知的三个顶点均在格点上,则的值为()A. B. C. D.2.如图,AB是⊙O的直径,CD是⊙O的弦,∠ACD=40°,则∠BAD为()A.40° B.50° C.60° D.70°3.关于二次函数,下列说法错误的是()A.它的图象开口方向向上 B.它的图象顶点坐标为(0,4)C.它的图象对称轴是y轴 D.当时,y有最大值44.如图,铁道口的栏杆短臂长1m,长臂长16m.当短臂端点下降0.5m时,长臂端点升高()A.5m B.6m C.7m D.8m5.菱形中,,对角线相交于点,以为圆心,以3为半径作,则四个点在上的个数为()A.1 B.2 C.3 D.46.四边形内接于⊙,点是的内心,,点在的延长线上,则的度数为()A.56° B.62° C.68° D.48°7.若一元二次方程有两个相等的实数根,则m的值是()A.2 B. C. D.8.如图,在平面直角坐标系中,⊙O的半径为1,则直线与⊙O的位置关系是()A.相离 B.相切 C.相交 D.以上三种情况都有可能9.一元二次方程x2+x﹣1=0的两根分别为x1,x2,则=()A. B.1 C. D.10.如图,现有两个相同的转盘,其中一个分为红、黄两个相等的区域,另一个分为红、黄、蓝三个相等的区域,随即转动两个转盘,转盘停止后指针指向相同颜色的概率为()A. B. C. D.二、填空题(每小题3分,共24分)11.已知关于的方程的一个根为6,则实数的值为__________.12.在平面直角坐标系中,点的坐标分别是,以点为位似中心,相们比为,把缩小,得到,则点的对应点的坐标为_____.13.将抛物线向左平移2个单位,再向上平移1个单位后,得到的抛物线的解析式为_________________.14.体育课上,小聪,小明,小智,小慧分别在点O处进行了一次铅球试投,铅球分别落在图中的点A,B,C,D处,则他们四人中,成绩最好的是______.15.如图,P为平行四边形ABCD边AD上一点,E、F分别为PB、PC的中点,ΔPEF、ΔPDC、ΔPAB的面积分别为S、S1、S1.若S=1,则S1+S1=.16.如图,四边形ABCD中,AB∥CD,∠C=90°,AB=1,CD=2,BC=3,点P为BC边上一动点,若AP⊥DP,则BP的长为_____.17.半径为6cm的圆内接正四边形的边长是____cm..18.如图,在平面直角坐标系中,反比例函数(x>0)与正比例函数y=kx、(k>1)的图象分别交于点A、B,若∠AOB=45°,则△AOB的面积是________.三、解答题(共66分)19.(10分)一个盒中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸取一个小球然后放回,再随机摸出一个小球.(Ⅰ)请用列表法(或画树状图法)列出所有可能的结果;(Ⅱ)求两次取出的小球标号相同的概率;(Ⅲ)求两次取出的小球标号的和大于6的概率.20.(6分)如图,AB是⊙O的直径,点P是AB上一点,且点P是弦CD的中点.(1)依题意画出弦CD,并说明画图的依据;(不写画法,保留画图痕迹)(2)若AP=2,CD=8,求⊙O的半径.21.(6分)小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了60次实验,实验的结果如下:朝上的点数123456出现的次数79682010(1)计算“3点朝上”的频率和“5点朝上”的频率.(2)小颖说:“根据实验,一次实验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次”,小颖和小红的说法正确吗?为什么?(3)小颖和小红各投掷一枚骰子,用列表或画树状图的方法求出两枚骰子朝上的点数之和为3的倍数的概率.22.(8分)如图,抛物线过原点,且与轴交于点.(1)求抛物线的解析式及顶点的坐标;(2)已知为抛物线上一点,连接,,,求的值;(3)在第一象限的抛物线上是否存在一点,过点作轴于点,使以,,三点为顶点的三角形与相似,若存在,求出满足条件的点的坐标;若不存在,请说明理由.23.(8分)如图,破残的圆形轮片上,弦AB的垂直平分线交弧AB于C,交弦AB于D.求作此残片所在的圆(不写作法,保留作图痕迹).24.(8分)已知二次函数y=x2+2mx+(m2﹣1)(m是常数).(1)若它的图象与x轴交于两点A,B,求线段AB的长;(2)若它的图象的顶点在直线y=x+3上,求m的值.25.(10分)某单位准备组织员工到武夷山风景区旅游,旅行社给出了如下收费标准(如图所示):设参加旅游的员工人数为x人.(1)当25<x<40时,人均费用为元,当x≥40时,人均费用为元;(2)该单位共支付给旅行社旅游费用27000元,请问这次参加旅游的员工人数共有多少人?26.(10分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A、B两点.(1)利用图中的条件,求反比例函数和一次函数的解析式.(2)求△AOB的面积.(3)根据图象直接写出使一次函数的值大于反比例函数的值的x的取值范围.
参考答案一、选择题(每小题3分,共30分)1、D【分析】过B点作BD⊥AC于D,求得AB、AC的长,利用面积法求得BD的长,利用勾股定理求得AD的长,利用锐角三角函数即可求得结果.【详解】过B点作BD⊥AC于D,如图,
由勾股定理得,,,∵,即,在中,,,,,∴.故选:D.【点睛】本题考查了解直角三角形以及勾股定理的运用,面积法求高的运用;熟练掌握勾股定理,构造直角三角形是解题的关键.2、B【分析】连接BD,根据直径所对的圆周角是直角可得∠ADB的度数,然后在根据同弧所对的圆周角相等即可解决问题.【详解】解:如图,连接BD.∵AB是直径,∴∠ADB=90°,∵∠B=∠C=40°,∴∠DAB=90°﹣40°=50°,故选:B.【点睛】本题考查的是直径所对的圆周角是直角与同弧所对的圆周角相等的知识,能够连接BD是解题的关键.3、D【分析】由抛物线的解析式可求得其开口方向、对称轴、函数的最值即可判断.【详解】∵,∴抛物线开口向上,对称轴为直线x=0,顶点为(0,4),当x=0时,有最小值4,故A、B、C正确,D错误;故选:D.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x−h)2+k中,对称轴为x=h,顶点坐标为(h,k).4、D【分析】栏杆长短臂在升降过程中,将形成两个相似三角形,利用对应变成比例解题.【详解】解:设长臂端点升高x米,则,经检验,x=1是原方程的解,∴x=1.故选D.5、B【分析】根据菱形的性质可知,AO=CO=3,OB=OD,AC⊥BD,再根据勾股定理求出BO的长,从而可以判断出结果.【详解】解:如图,由菱形的性质可得,AO=CO=3,BO=DO,AC⊥BD,在Rt△ABO中,BO==DO≠3,∴点A,C在上,点B,D不在上.故选:B.【点睛】本题考查菱形的性质、点与圆的位置关系以及勾股定理,掌握基本性质和概念是解题的关键.6、C【分析】由点I是的内心知,,从而求得,再利用圆内接四边形的外角等于内对角可得答案.【详解】∵点I是的内心∴,∵∴∵四边形内接于⊙∴故答案为:C.【点睛】本题考查了三角形的内心,圆内接四边形的性质,掌握三角形内心的性质和圆内接四边形的外角等于内对角是解题的关键.7、D【分析】根据一元二次方程根的判别式,即可得到答案【详解】解:∵一元二次方程有两个相等的实数根,∴,解得:;故选择:D.【点睛】本题考查了一元二次方程根的判别式,解题的关键是熟练掌握利用根的判别式求参数的值.8、B【详解】解:如图,在中,令x=0,则y=-;令y=0,则x=,∴A(0,-),B(,0).∴OA=OB=.∴△AOB是等腰直角三角形.∴AB=2,过点O作OD⊥AB,则OD=BD=AB=×2=1.又∵⊙O的半径为1,∴圆心到直线的距离等于半径.∴直线y=x-2与⊙O相切.故选B.9、B【解析】根据根与系数的关系得到x1+x2=-1,x1•x2=-1,然后把进行通分,再利用整体代入的方法进行计算.【详解】根据题意得x1+x2=-1,x1•x2=-1,所以==1,故选B.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=-,x1•x2=.10、A【解析】先画树状图展示所有6种等可能的结果数,找出停止后指针指向相同颜色的结果数,然后根据概率公式计算.【详解】画树状图如下:由树状图知,共有6种等可能结果,其中转盘停止后指针指向相同颜色的有2种结果,所以转盘停止后指针指向相同颜色的概率为=,故选:A.【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.二、填空题(每小题3分,共24分)11、1【分析】将一元二次方程的根代入即可求出k的值.【详解】解:∵关于的方程的一个根为6∴解得:k=1故答案为:1.【点睛】此题考查的是已知一元二次方程的根,求方程中的参数,掌握方程的解的定义是解决此题的关键.12、或【解析】利用位似图形的性质可得对应点坐标乘以和-即可求解.【详解】解:以点为位似中心,相似比为,把缩小,点的坐标是则点的对应点的坐标为或,即或,故答案为:或.【点睛】本题考查的是位似图形,熟练掌握位似变换是解题的关键.13、.【解析】∵将抛物线向左平移2个单位,再向上平移1个单位,∴抛物线的顶点(0,0)也同样向左平移2个单位,再向上平移1个单位,得到新抛物线的的顶点(-2,1).∴平移后得到的抛物线的解析式为.14、小智【分析】通过比较线段的长短,即可得到OC>OD>OB>OA,进而得出表示最好成绩的点为点C.【详解】由图可得,OC>OD>OB>OA,∴表示最好成绩的点是点C,故答案为:小智.【点睛】本题主要参考了比较线段的长短,比较两条线段长短的方法有两种:度量比较法、重合比较法.15、2.【详解】∵E、F分别为PB、PC的中点,∴EFBC.∴ΔPEF∽ΔPBC.∴SΔPBC=4SΔPEF=8s.又SΔPBC=S平行四边形ABCD,∴S1+S1=SΔPDC+SΔPAB=S平行四边形ABCD=8s=2.16、1或2【分析】设BP=x,则PC=3-x,根据平行线的性质可得∠B=90°,根据同角的余角相等可得∠CDP=∠APB,即可证明△CDP∽△BPA,根据相似三角形的性质列方程求出x的值即可得答案.【详解】设BP=x,则PC=3-x,∵AB∥CD,∠C=90°,∴∠B=180°-∠C=90°,∴∠B=∠C,∵AP⊥DP,∴∠APB+∠DPC=90°,∵∠CDP+∠DPC=90°,∴∠CDP=∠APB,∴△CDP∽△BPA,∴,∵AB=1,CD=2,BC=3,∴,解得:x1=1,x2=2,∴BP的长为1或2,故答案为:1或2【点睛】此题考查的是相似三角形的判定及性质,掌握相似三角形的对应边成比例列方程是解题的关键.17、6【详解】解:如图:圆的半径是6cm,那么内接正方形的边长为:AB=CB,因为:AB2+CB2=AC2,所以:AB2+CB2=122即AB2+CB2=144解得AB=cm.故答案为:6.18、2【解析】作BD⊥x轴,AC⊥y轴,OH⊥AB(如图),设A(x1,y1),B(x2,y2),根据反比例函数k的几何意义得x1y1=x2y2=2;将反比例函数分别与y=kx,y=联立,解得x1=,x2=,从而得x1x2=2,所以y1=x2,y2=x1,根据SAS得△ACO≌△BDO,由全等三角形性质得AO=BO,∠AOC=∠BOD,由垂直定义和已知条件得∠AOC=∠BOD=∠AOH=∠BOH=22.5°,根据AAS得△ACO≌△BDO≌△AHO≌△BHO,根据三角形面积公式得S△ABO=S△AHO+S△BHO=S△ACO+S△BDO=x1y1+x2y2=×2+×2=2.【详解】如图:作BD⊥x轴,AC⊥y轴,OH⊥AB,设A(x1,y1),B(x2,y2),∵A、B在反比例函数上,∴x1y1=x2y2=2,∵,解得:x1=,又∵,解得:x2=,∴x1x2=×=2,∴y1=x2,y2=x1,即OC=OD,AC=BD,∵BD⊥x轴,AC⊥y轴,∴∠ACO=∠BDO=90°,∴△ACO≌△BDO(SAS),∴AO=BO,∠AOC=∠BOD,又∵∠AOB=45°,OH⊥AB,∴∠AOC=∠BOD=∠AOH=∠BOH=22.5°,∴△ACO≌△BDO≌△AHO≌△BHO,∴S△ABO=S△AHO+S△BHO=S△ACO+S△BDO=x1y1+x2y2=×2+×2=2,故答案为:2.【点睛】本题考查了反比例函数系数k的几何意义,反比例函数与一次函数的交点问题,全等三角形的判定与性质等,正确添加辅助线是解题的关键.三、解答题(共66分)19、(Ⅰ)画树状图见解析;(Ⅱ)两次取出的小球标号相同的概率为;(Ⅲ)两次取出的小球标号的和大于6的概率为.【分析】(Ⅰ)根据题意可画出树状图,由树状图即可求得所有可能的结果.
(Ⅱ)根据树状图,即可求得两次取出的小球标号相同的情况,然后利用概率公式求解即可求得答案.
(Ⅲ)根据树状图,即可求得两次取出的小球标号的和大于6的情况,然后利用概率公式求解即可求得答案.【详解】解:(Ⅰ)画树状图得:(Ⅱ)∵共有16种等可能的结果,两次取出的小球的标号相同的有4种情况,∴两次取出的小球标号相同的概率为=;(Ⅲ)∵共有16种等可能的结果,两次取出的小球标号的和大于6的有3种结果,∴两次取出的小球标号的和大于6的概率为.【点睛】此题考查列表法与树状图法求概率的知识.此题难度不大,解题的关键是注意列表法与树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.20、(1)画图见解析,依据:平分弦(非直径)的直径垂直于弦;(2)⊙O的半径为1.【分析】(1)过P点作AB的垂线即可,作图依据是垂径定理的推论.(2)设⊙O的半径为r,在Rt△OPD中,利用勾股定理构建方程即可解决问题.【详解】(1)过P点作AB的垂线交圆与C、D两点,CD就是所求的弦,如图.依据:平分弦(非直径)的直径垂直于弦;(2)如图,连接OD,∵OA⊥CD于点P,AB是⊙O的直径,∴∠OPD=90°,PD=CD,∵CD=8,∴PD=2.设⊙O的半径为r,则OD=r,OP=OA﹣AP=r﹣2,在Rt△ODP中,∠OPD=90°,∴OD2=OP2+PD2,即r2=(r﹣2)2+22,解得r=1,即⊙O的半径为1.【点睛】本题主要考查了垂径定理,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题.21、(1)0.1;(2)小颖的说法是错误的,理由见解析(3)列表见详解;【分析】(1)根据频率等于频数除以总数,即可分别求出“3点朝上”的频率和“5点朝上”的频率.(2)频率不等于概率,只能估算概率,故小颖的说法不对,事件发生具有随机性,故得知小红的说法也不对.(3)列表,找出点数之和是3的倍数的结果,除以总的结果,即可解决.【详解】解:(1)“3点朝上”的频率:6÷60=0.1“5点朝上”的频率:20÷60=.(2)小颖的说法是错误的,因为“5点朝上”的频率最大并不能说明5点朝上的概率最大,频率不等于概率;小红的说法是错误的,因为事件发生具有随机性,故“点朝上”的次数不一定是100次.(3)列表如下:共有36种情况,点数之和为3的倍数的情况有12种.故P(点数之和为3的倍数)==.【点睛】本题主要考查了频率的公式、频率与概率的关系以及列表法和树状图法求概率,能够熟练其概念以及准确的列表是解决本题的关键.22、(1)抛物线的解析式为;顶点的坐标为;(2)3;(3)点的坐标为或.【分析】(1)用待定系数法即可求出抛物线的解析式,进而即可求出顶点坐标;(2)先将点C的横坐标代入抛物线的解析式中求出纵坐标,根据B,C的坐标得出,,从而有,最后利用求解即可;(3)设为.由于,所以当以,,三点为顶点的三角形与相似时,分两种情况:或,分别建立方程计算即可.【详解】解:(1)∵抛物线过原点,且与轴交于点,∴,解得.∴抛物线的解析式为.∵,∴顶点的坐标为.(2)∵在抛物线上,∴.作轴于,作轴于,则,,∴,.∴.∵,.∴.(3)假设存在.设点的横坐标为,则为.由于,所以当以,,三点为顶点的三角形与相似时,有或∴或.解得或.∴存在点,使以,,三点为顶点的三角形与相似.∴点的坐标为或.【点睛】本题主要考查二次函数与几何综合,掌握二次函数的图象和性质,相似三角形的性质是解题的关键.23、见解析【分析】由垂径定理知,垂直于弦的直径是弦的中垂线,故作AC的中垂线交直线CD于点O,则点O是弧ACB所在圆的圆心.【详解】作弦AC的垂直平分线交直线CD于O点,以O为圆心OA长为半径作圆O就是此残片所在的圆,如图.【点睛】本题考查的是垂径定理的应用,熟知“平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧”是解答此题的关键.24、AB=2;(2)m=1.【分析】(1)令y=0求得抛物线与x轴的交点,从而求得两交点之间的距离即可;(2)用含m的式子表示出顶点坐标,然后代入一次函数的解析式即可求得m的值.【详解】(1)令y=x2+2mx+(m2﹣1)=0,∴(x+m+1)(x+m﹣1)=0,解得:x1=﹣m﹣1,x2=﹣m+1,∴AB=|x1﹣x2|=|﹣m﹣1﹣(﹣m+1)|=2;(2)∵二次函数y=x2+2mx+(m2﹣1),∴顶点坐标为(﹣2m,),即:(﹣2m,﹣1),∵图象的顶点在直线y=x+3上,∴﹣×(﹣2m)+3=﹣1,解得:m=1.【点睛】本题考查了解二次函数的问题,掌握二次函数的性质以及解二次函数的方法是解题的关键.25、(1)1000﹣20(x﹣25);1.(2)30名【分析】(1)求出当人均旅游费为1元时的员工人数,再根据给定的收费标准即可求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《证劵基础知识最终》课件
- 《激光切割工艺》课件
- 荒山绿化项目可行性研究报告
- 《人力资源管理奥秘》课件
- 股份解禁协议三篇
- 专业毕业实习报告4篇
- 2023年-2024年企业主要负责人安全教育培训试题及答案(易错题)
- 2024员工三级安全培训考试题带解析答案可打印
- 2023年-2024年项目部安全管理人员安全培训考试题附答案【培优A卷】
- 2023年-2024年企业主要负责人安全培训考试题(预热题)
- JJF 1638-2017 多功能标准源校准规范-(高清现行)
- 工业工程技术学生专业技能考核标准(高职)(高职)
- 生物化学期末考试题库与答案
- 山东昌乐二中的“271高效课堂”
- 人教版高中物理新旧教材知识对比
- 国际结算期末复习试卷5套及参考答案
- 六年级上册数学圆中方方中圆经典题练习
- 现场组织机构框图及说明
- 《城镇燃气管理条例》解读
- X62W万能铣床电气原理图解析(共18页)
- 小康煤矿水文地质类型划分报告
评论
0/150
提交评论