版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年吉林省白城市五校联考数学九上期末检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.下列事件的概率,与“任意选个人,恰好同月过生日”这一事件的概率相等的是()A.任意选个人,恰好生肖相同 B.任意选个人,恰好同一天过生日C.任意掷枚骰子,恰好朝上的点数相同 D.任意掷枚硬币,恰好朝上的一面相同2.用配方法解一元二次方程x2﹣4x﹣5=0的过程中,配方正确的是()A.(x+2)2=1 B.(x﹣2)2=1 C.(x+2)2=9 D.(x﹣2)2=93.在平面直角坐标系中,将抛物线绕着原点旋转,所得抛物线的解析式是()A. B.C. D.4.在一个不透明的布袋中装有9个白球和若干个黑球,它们除颜色不同外,其余均相同。若从中随机摸出一个球,摸到白球的概率是,则黑球的个数为()A.3 B.12 C.18 D.275.如图,点O为平面直角坐标系的原点,点A在x轴上,△OAB是边长为4的等边三角形,以O为旋转中心,将△OAB按顺时针方向旋转60°,得到△OA′B′,那么点A′的坐标为()A.(-2,2) B.(-2,4) C.(-2,2) D.(2,2)6.如图,在Rt△ABC中,∠ACB=90°,BC=1,AB=2,则下列结论正确的是()A.sinA= B.tanA= C.cosB= D.tanB=7.若关于x的分式方程有增根,则m为()A.-1 B.1 C.2 D.-1或28.下列事件为必然事件的是()A.打开电视机,正在播放新闻 B.任意画一个三角形,其内角和是C.买一张电影票,座位号是奇数号 D.掷一枚质地均匀的硬币,正面朝上9.在实数3.14,﹣π,,﹣中,倒数最小的数是()A. B. C.﹣π D.3.1410.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000,这个数用科学记数法表示()A. B. C. D.二、填空题(每小题3分,共24分)11.若扇形的半径长为3,圆心角为60°,则该扇形的弧长为___.12.关于x的分式方程有增根,则m的值为__________.13.为了提高学校的就餐效率,巫溪中学实践小组对食堂就餐情况进行调研后发现:在单位时间内,每个窗口买走午餐的人数和因不愿长久等待而到小卖部的人数各是一个固定值,并且发现若开一个窗口,45分钟可使等待的人都能买到午餐,若同时开2个窗口,则需30分钟.还发现,若能在15分钟内买到午餐,那么在单位时间内,去小卖部就餐的人就会减少80%.在学校总人数一定且人人都要就餐的情况下,为方便学生就餐,总务处要求食堂在10分钟内卖完午餐,至少要同时开多少______个窗口.14.如图,是的直径,点和点是上位于直径两侧的点,连结,,,,若的半径是,,则的值是_____________.15.如图,点A、B、C、D都在⊙O上,∠ABC=90°,AD=4,CD=3,则⊙O的半径的长是______.16.化简:=______.17.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是__________________________.18.如图,将△ABC绕点C顺时针旋转90°得到△EDC,若点A、D、E在同一条直线上,∠ACD=70°,则∠EDC的度数是_____.三、解答题(共66分)19.(10分)如图,在的正方形网格中,网线的交点称为格点,点,,都是格点.已知每个小正方形的边长为1.(1)画出的外接圆,并直接写出的半径是多少.(2)连结,在网络中画出一个格点,使得是直角三角形,且点在上.20.(6分)已知二次函数(是常数).(1)当时,求二次函数的最小值;(2)当,函数值时,以之对应的自变量的值只有一个,求的值;(3)当,自变量时,函数有最小值为-10,求此时二次函数的表达式.21.(6分)已知关于x的不等式组恰有两个整数解,求实数a的取值范围.22.(8分)如图,AB是⊙O的直径,直线MC与⊙O相切于点C.过点A作MC的垂线,垂足为D,线段AD与⊙O相交于点E.(1)求证:AC是∠DAB的平分线;(2)若AB=10,AC=4,求AE的长.23.(8分)如图,AB是⊙O的直径,AM和BN是⊙O的两条切线,E为⊙O上一点,过点E作直线DC分别交AM,BN于点D,C,且CB=CE.(1)求证:DA=DE;(2)若AB=6,CD=4,求图中阴影部分的面积.24.(8分)解方程:(1)x2-3x+1=1;(2)x(x+3)-(2x+6)=1.25.(10分)如图①,在中,,是边的中点,以点为圆心的圆经过点.(1)求证:与相切;(2)在图①中,若与相交于点,与相交于点,连接,,,如图②,则________.26.(10分)如图1,抛物线y=ax2+bx+c的顶点(0,5),且过点(﹣3,),先求抛物线的解析式,再解决下列问题:(应用)问题1,如图2,线段AB=d(定值),将其弯折成互相垂直的两段AC、CB后,设A、B两点的距离为x,由A、B、C三点组成图形面积为S,且S与x的函数关系如图所示(抛物线y=ax2+bx+c上MN之间的部分,M在x轴上):(1)填空:线段AB的长度d=;弯折后A、B两点的距离x的取值范围是;若S=3,则是否存在点C,将AB分成两段(填“能”或“不能”);若面积S=1.5时,点C将线段AB分成两段的长分别是;(2)填空:在如图1中,以原点O为圆心,A、B两点的距离x为半径的⊙O;画出点C分AB所得两段AC与CB的函数图象(线段);设圆心O到该函数图象的距离为h,则h=,该函数图象与⊙O的位置关系是.(提升)问题2,一个直角三角形斜边长为c(定值),设其面积为S,周长为x,证明S是x的二次函数,求该函数关系式,并求x的取值范围和相应S的取值范围.
参考答案一、选择题(每小题3分,共30分)1、A【分析】根据概率的意义对各选项分析判断即可得解.【详解】任选人,恰好同月过生日的概率为,A任选人,恰好生肖相同的概率为,B任选人,恰好同一天过生日的概率为,C任意掷枚骰子,恰好朝上的点数相同的概率为,D任意掷枚硬币,恰好朝上的一面相同的概率为.故选:A.【点睛】本题考查了概率的意义,正确理解概率的含义是解决本题的关键.2、D【分析】先移项,再在方程两边都加上一次项系数一半的平方,即可得出答案.【详解】解:移项得:x2﹣4x=5,配方得:,(x﹣2)2=9,故选:D.【点睛】本题考查的知识点是用配方法解一元二次方程,掌握用配方法解一元二次方程的步骤是解此题的关键.3、A【解析】试题分析:先将原抛物线化为顶点式,易得出与y轴交点,绕与y轴交点旋转180°,那么根据中心对称的性质,可得旋转后的抛物线的顶点坐标,即可求得解析式.解:由原抛物线解析式可变为:,∴顶点坐标为(-1,2),又由抛物线绕着原点旋转180°,∴新的抛物线的顶点坐标与原抛物线的顶点坐标关于点原点中心对称,∴新的抛物线的顶点坐标为(1,-2),∴新的抛物线解析式为:.故选A.考点:二次函数图象与几何变换.4、C【分析】设黑球个数为,根据概率公式可知白球个数除以总球数等于摸到白球的概率,建立方程求解即可.【详解】设黑球个数为,由题意得解得:故选C.【点睛】本题考查根据概率求数量,熟练掌握概率公式建立方程是解题的关键.5、A【分析】作BC⊥x轴于C,如图,根据等边三角形的性质得OA=OB=4,AC=OC=2,∠BOA=60°,则易得A点坐标和O点坐标,再利用勾股定理计算出BC=2,然后根据第二象限点的坐标特征可写出B点坐标;由旋转的性质得∠AOA′=∠BOB′=60°,OA=OB=OA′=OB′,则点A′与点B重合,于是可得点A′的坐标.【详解】解:作BC⊥x轴于C,如图,∵△OAB是边长为4的等边三角形∴OA=OB=4,AC=OC=1,∠BOA=60°,∴A点坐标为(-4,0),O点坐标为(0,0),在Rt△BOC中,BC=,∴B点坐标为(-2,2);∵△OAB按顺时针方向旋转60°,得到△OA′B′,∴∠AOA′=∠BOB′=60°,OA=OB=OA′=OB′,∴点A′与点B重合,即点A′的坐标为(-2,2),故选:A.【点睛】本题考查了坐标与图形变化-旋转:记住关于原点对称的点的坐标特征;图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°;解决本题的关键是正确理解题目,按题目的叙述一定要把各点的大致位置确定,正确地作出图形.6、D【分析】根据三角函数的定义求解.【详解】解:∵在Rt△ABC中,∠ACB=90°,BC=1,AB=1.∴AC=,∴sinA=,tanA=,cosB=,tanB=.故选:D.【点睛】本题考查了解直角三角形,解答此题关键是正确理解和运用锐角三角函数的定义.7、A【分析】增根就是分母为零的x值,所以对分式方程去分母,得m=x-3,将增根x=2代入即可解得m值.【详解】对分式方程去分母,得:1=﹣m+2-x,∴m=x-3,∵方程有增根,∴x-2=0,解得:x=2,将x=2代入m=x-3中,得:m=2-3=﹣1,故选:A.【点睛】本题考查分式方程的解,解答的关键是理解分式方程有增根的原因.8、B【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.【详解】∵A,C,D选项为不确定事件,即随机事件,故不符合题意.∴一定发生的事件只有B,任意画一个三角形,其内角和是,是必然事件,符合题意.故选B.【点睛】本题考查的是对必然事件的概念的理解.解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养.用到的知识点为:必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9、A【解析】先根据倒数的定义计算,再比较大小解答.【详解】解:在3.14,﹣π,,﹣中,倒数最小的数是两个负数中一个,所以先求两个负数的倒数:﹣π的倒数是﹣≈﹣0.3183,﹣的倒数是﹣≈﹣4472,所以﹣>﹣,故选:A.【点睛】本题考查了倒数的定义.解题的关键是掌握倒数的定义,会比较实数的大小.10、C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将4400000000用科学记数法表示为4.4×109.
故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题(每小题3分,共24分)11、【分析】根据弧长的公式列式计算即可.【详解】∵一个扇形的半径长为3,且圆心角为60°,
∴此扇形的弧长为=π.
故答案为:π.【点睛】此题考查弧长公式,熟记公式是解题关键.12、1.【解析】去分母得:7x+5(x-1)=2m-1,因为分式方程有增根,所以x-1=0,所以x=1,把x=1代入7x+5(x-1)=2m-1,得:7=2m-1,解得:m=1,故答案为1.13、9【分析】设每个窗口每分钟能卖人的午餐,每分钟外出就餐有人,学生总数为人,并设要同时开个窗口,根据并且发现若开1个窗口,45分钟可使等待人都能买到午餐;若同时开2个窗口,则需30分钟.还发现,若在15分钟内等待的学生都能买到午餐,在单位时间内,外出就餐的人数可减少80%.在学校学生总人数不变且人人都要就餐的情况下,为了方便学生就餐,调查小组建议学校食堂10分钟内卖完午餐,可列出不等式求解.【详解】解:设每个窗口每分钟能卖人的午餐,每分钟外出就餐有人,学生总数为人,并设要同时开个窗口,依题意有,由①、②得,,代入③得,所以.因此,至少要同时开9个窗口.故答案为:9【点睛】考查一元一次不等式组的应用;一些必须的量没有时,应设其为未知数;当题中有多个未知数时,应利用相应的方程用其中一个未知数表示出其余未知数;得到20分钟个窗口卖出午餐数的关系式是解决本题的关键.14、【分析】根据题意可知∠ADB=90°,∠ACD=∠ABD,求出∠ABD的正弦就是∠ACD的正弦值.【详解】解:∵是的直径,∴∠ADB=90°∴∠ACD=∠ABD∵的半径是,,∴故答案为:【点睛】本题考查的是锐角三角函数值.15、2.5【分析】连接AC,根据∠ABC=90°可知AC是⊙O的直径,故可得出∠D=90°,再由AD=4,CD=3可求出AC的长,进而得出结论.【详解】解:如图,连接AC,∵∠ABC=90°,
∴AC是⊙O的直径,
∴∠D=90°,
∵AD=4,CD=3,
∴AC=5,∴⊙O的半径=2.5,故答案为:2.5.【点睛】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.16、.【解析】试题解析:原式故答案为17、50(1﹣x)2=1.【解析】由题意可得,50(1−x)²=1,故答案为50(1−x)²=1.18、115°【解析】根据∠EDC=180°﹣∠E﹣∠DCE,想办法求出∠E,∠DCE即可.【详解】由题意可知:CA=CE,∠ACE=90°,∴∠E=∠CAE=45°,∵∠ACD=70°,∴∠DCE=20°,∴∠EDC=180°﹣∠E﹣∠DCE=180°﹣45°﹣20°=115°,故答案为115°.【点睛】本题考查了旋转的性质,等腰直角三角形的性质,三角形的内角和定理等知识,解题的关键是灵活运用所学知识,问题,属于中考常考题型.三、解答题(共66分)19、(1)作图见解析,半径为;(2)作图见解析【分析】(1)作AB和BC的垂直平分线,交点即为点O的位置,在网格中应用勾股定理即可求得半径;(2)只能是或,直接利用网格作图即可.【详解】解:(1)作AB和BC的垂直平分线,交点即为点O,如图:,根据勾股定理可得半径为;(2)当是直角三角形时,且点在上,只能是或,利用网格作图如下:.【点睛】本题考查尺规作图、确定圆的条件,掌握三角形外接圆圆心是三边线段垂直平分线的交点是解题的关键.20、(1)当x=2时,;(2)b=±3;
(3)或【分析】(1)将代入并化简,从而求出二次函数的最小值;(2)根据自变量的值只有一个,得出根的判别式,从而求出的值;(3)当,对称轴为x=b,分b<1、、三种情况进行讨论,从而得出二次函数的表达式.【详解】(1)当b=2,c=5时,∴当x=2时,(2)当c=3,函数值时,
∴∵对应的自变量的值只有一个,
∴,∴b=±3(3)
当c=3b时,∴抛物线对称轴为:x=b①b<1时,在自变量x的值满足1≤x≤5的情况下,y随x的增大而增大,∴当x=1时,y最小.∴∴b=﹣11②,当x=b时,y最小.∴∴,(舍去)
③时,在自变量x的值满足1≤x≤5的情况下,y随x的增大而
减小,∴当x=5时,y最小.∴,∴b=5(舍去)综上可得:b=﹣11或b=5∴二次函数的表达式:或【点睛】本题考查了二次函数的性质和应用,掌握根的判别式、二次函数的性质和解二次函数的方法是解题的关键.21、-4≤a<-3.【解析】试题分析:首先解不等式组求得解集,然后根据不等式组只有两个整数解,确定整数解,则可以得到一个关于a的不等式组求得a的范围.试题解析:解:由5x+2>3(x﹣2)得:x>﹣2,由x≤8﹣x+2a得:x≤4+a.则不等式组的解集是:﹣2<x≤4+a.不等式组只有两个整数解,是﹣2和2.根据题意得:2≤4+a<2.解得:﹣4≤a<﹣3.点睛:本题考查了不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.22、(1)详见解析;(2)1.【分析】(1)连接OC,根据切线的性质得到∠OCM=90°,得到OC∥AD,根据平行线的性质、等腰三角形的性质证明结论;(2)连接BC,连接BE交OC于点F,根据勾股定理求出BC,证明△CFB∽△BCA,根据相似三角形的性质求出CF,得到OF的长,根据三角形中位线定理解答即可.【详解】(1)证明:连接,如图:∵直线与相切于点∴∵∴∴∴∴∵∴∴∴是的平分线.(2)解:连接,连接交于点,如图:∵AB是的直径∴∵,∴∵∴∴,为线段中点∵,∴∴,即∴∴∵为直径中点,为线段中点∴.故答案是:(1)详见解析;(2)1【点睛】本题考查了切线的性质、平行线的性质、等腰三角形的性质、勾股定理、相似三角形的判定和性质以及三角形中位线的性质,适当的添加辅助线是解题的关键.23、(1)证明见解析;(2)【分析】(1)连接OE,BE,根据已知条件证明CD为⊙O的切线,然后再根据切线长定理即可证明DA=DE;(2)如图,连接OC,过点D作DF⊥BC于点F,根据S阴影部分=S四边形BCEO﹣S扇形OBE,利用分割法即可求得阴影部分的面积.【详解】(1)如图,连接OE、BE,∵OB=OE,∴∠OBE=∠OEB.∵BC=EC,∴∠CBE=∠CEB,∴∠OBC=∠OEC.∵BC为⊙O的切线,∴∠OEC=∠OBC=90°;∵OE为半径,∴CD为⊙O的切线,∵AD切⊙O于点A,∴DA=DE;(2)如图,连接OC,过点D作DF⊥BC于点F,则四边形ABFD是矩形,∴AD=BF,DF=AB=6,∴DC=BC+AD=4,∵CF==2,∴BC﹣AD=2,∴BC=3,在直角△OBC中,tan∠BOC==,∴∠BOC=60°.在△OEC与△OBC中,,∴△OEC≌△OBC(SSS),∴∠BOE=2∠BOC=120°,∴S阴影部分=S四边形BCEO﹣S扇形OBE=2×BC•OB﹣=9﹣3π.【点睛】本题考查了切线的判定与性质、切线长定理,扇形的面积等,正确添加辅助线,熟练运用相关知识是解题的关键.24、(4)x4=,x2=;(2)x4=-3,x2=2.【解析】试题分析:(4)直接利用公式法求出x的值即可;(2)先把原方程进行因式分解,再求出x的值即可.试题解析:(4)∵一元二次方程x2-3x+4=4中,a=4,b=-3,c=4,∴△=b2-4ac=(-3)2-4×4×4=3.∴x=.即x4=,x2=;(2)∵因式分解得(x+3)(x-2)=4,∴x+3=4或x-2=4,解得x4=-3,x2=2.考点:4.解一元二次方程-因式分解法;2.解一元二次方程-公式法.25、(1)见解析;(2)【分析】(1)连接OC,利用等腰三角形的三线合一性质证明即可.(2)利用30°的特殊三角形的性质求出即可.【详解】(1)证明:连接.,是边的中点,.又点在上,与相切.图①(2)∵∠AOB=120°,OA=OB,∴∠A=30°,又∵OD=6∴OA=12∴AC=,AB=∵DE是三角形OAB的中位线,∴DE=.图②【点睛】本题考查圆与三角形的结合,关键在于熟悉基础知识.26、抛物线的解析式为:y=﹣x2+5;(2)20<x<2,不能,+和﹣;(2),相离或相切或相交;(3)相应S的取值范围为S>c2.【分析】将顶点(0,5)及点(﹣3,)代入抛物线的顶点式即可求出其解析式;(2)由抛物线的解析式先求出点M的坐标,由二次函数的图象及性质即可判断d的值,可由d的值判断出x的取值范围,分别将S=3和2.5代入抛物线解析式,即可求出点C将线段AB分成两段的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度大货车维修与保养服务合同
- 2024年度分包工程维修合同3篇
- 2024中国石化胜利油田分公司毕业生招聘202人易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国电信青海果洛分公司招聘易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国大地财产保险股份限公司招聘3人(云南怒江州)易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国农业科学技术出版社限公司编辑及营销人员招聘5人易考易错模拟试题(共500题)试卷后附参考答案
- 2024中华联合财产保险股份限公司嘉兴中心支公司招聘11人(浙江)易考易错模拟试题(共500题)试卷后附参考答案
- 2024下半年山东通汇资本投资集团限公司社会招聘7人易考易错模拟试题(共500题)试卷后附参考答案
- 2024年度电子商务运营推广外包服务合同
- 艾滋病发现与治疗历程回顾课件
- 公司BIM人才管理办法
- 卒中防治中心建设情况汇报(同名166)课件
- 广东新高考选科选科解读课件
- DB14-T 2511-2022研学旅行基地服务规范
- 产假、陪产假、流产假审批表
- 幼儿园生活垃圾分类管理台账四篇
- CRRT相关理论知识试题及答案
- 制剂室培训课件
- 三年级上册数学课件-4.3 除法的验算丨苏教版(共14张PPT)
- 四年级家长会(完美版)
- 帝光公司OEC目标“日事日毕、日清日高”实施方案
评论
0/150
提交评论