2023-2024学年湖南省娄底新化县联考数学九年级第一学期期末综合测试试题含解析_第1页
2023-2024学年湖南省娄底新化县联考数学九年级第一学期期末综合测试试题含解析_第2页
2023-2024学年湖南省娄底新化县联考数学九年级第一学期期末综合测试试题含解析_第3页
2023-2024学年湖南省娄底新化县联考数学九年级第一学期期末综合测试试题含解析_第4页
2023-2024学年湖南省娄底新化县联考数学九年级第一学期期末综合测试试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年湖南省娄底新化县联考数学九年级第一学期期末综合测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.在同一坐标系中,一次函数与二次函数的图象可能是().A. B. C. D.2.当取下列何值时,关于的一元二次方程有两个相等的实数根()A.1. B.2 C.4. D.3.如图,BD是菱形ABCD的对角线,CE⊥AB交于点E,交BD于点F,且点E是AB中点,则tan∠BFE的值是()A. B.2 C. D.4.如图,∠1=∠2A.∠C=∠D B.∠B=∠AED5.下列命题中,属于真命题的是()A.对角线互相垂直的四边形是平行四边形 B.对角线互相垂直平行的四边形是菱形C.对角线互相垂直且相等的四边形是矩形 D.对角线互相平分且相等的四边形是正方形6.若半径为5cm的一段弧长等于半径为2cm的圆的周长,则这段弧所对的圆心角为()A.144° B.132° C.126° D.108°7.把抛物线先向左平移个单位,再向下平移个单位,得到的抛物线的表达式是()A. B.C. D.8.一元二次方程mx2+mx﹣=0有两个相等实数根,则m的值为()A.0 B.0或﹣2 C.﹣2 D.29.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示()A.支出20元 B.收入20元 C.支出80元 D.收入80元10.如图⊙O的半径为5,弦心距,则弦的长是()A.4 B.6 C.8 D.511.若点A(-3,m),B(3,m),C(-1,m+n²+1)在同一个函数图象上,这个函数可能是()A.y=x+2 B. C.y=x²+2 D.y=-x²-212.同学们参加综合实践活动时,看到木工师傅用“三弧法”在板材边角处作直角,其作法是:如图:(1)作线段AB,分别以点A,B为圆心,AB长为半径作弧,两弧交于点C;(2)以点C为圆心,仍以AB长为半径作弧交AC的延长线于点D;(3)连接BD,BC.根据以上作图过程及所作图形,下列结论中错误的是()A.∠ABD=90° B.CA=CB=CD C.sinA= D.cosD=二、填空题(每题4分,共24分)13.从1,2,﹣3三个数中,随机抽取两个数相乘,积是偶数的概率是_____.14.在四边形ABCD中,AD=BC,AD∥BC.请你再添加一个条件,使四边形ABCD是菱形.你添加的条件是_________.(写出一种即可)15.如图,正方形中,点为射线上一点,,交的延长线于点,若,则______16.如图所示,中,,是中点,,垂足为点,与交于点,如果,那么______.17.一件商品的原价是100元,经过两次提价后的价格为121元,设平均每次提价的百分率都是x.根据题意,可列出方程___________________.18.如图,在平面直角坐标系中,函数与的图象交于两点,过作轴的垂线,交函数的图象于点,连接,则的面积为_______.三、解答题(共78分)19.(8分)已知二次函数中,函数与自变量的部分对应值如下表:(1)求该二次函数的关系式;(2)若,两点都在该函数的图象上,试比较与的大小.20.(8分)如图,三角形是以为底边的等腰三角形,点、分别是一次函数的图象与轴、轴的交点,点在二次函数的图象上,且该二次函数图象上存在一点使四边形能构成平行四边形.(1)试求、的值,并写出该二次函数表达式;(2)动点沿线段从到,同时动点沿线段从到都以每秒1个单位的速度运动,问:①当运动过程中能否存在?如果不存在请说明理由;如果存在请说明点的位置?②当运动到何处时,四边形的面积最小?此时四边形的面积是多少?21.(8分)如图,已知反比例函数的图像与一次函数的图像交于A(-1,),B在(,-3)两点.(1)求的值;(2)直接写出使一次函数值大于反比例函数值时x的取值范围.22.(10分)如图,,是的两条弦,点分别在,上,且,是的中点.求证:(1).(2)过作于点.当,时,求的半径.23.(10分)如图,某城建部门计划在新修的城市广场的一块长方形空地上修建一个面积为1200m2的停车场,将停车场四周余下的空地修建成同样宽的通道,已知长方形空地的长为50m,宽为40m.(1)求通道的宽度;(2)某公司希望用80万元的承包金额承揽修建广场的工程,城建部门认为金额太高需要降价,通过两次协商,最终以51.2万元达成一致,若两次降价的百分率相同,求每次降价的百分率.24.(10分)如图,一次函数y1=kx+b(k≠0)和反比例函数y2=(m≠0)的图象交于点A(-1,6),B(a,-2).(1)求一次函数与反比例函数的解析式;(2)根据图象直接写出y1>y2时,x的取值范围.25.(12分)在矩形ABCD中,AB=3,AD=5,E是射线DC上的点,连接AE,将△ADE沿直线AE翻折得△AFE.(1)如图①,点F恰好在BC上,求证:△ABF∽△FCE;(2)如图②,点F在矩形ABCD内,连接CF,若DE=1,求△EFC的面积;(3)若以点E、F、C为顶点的三角形是直角三角形,则DE的长为.26.解方程(1)(用配方法)(2)(3)计算:

参考答案一、选择题(每题4分,共48分)1、D【解析】试题分析:A.由直线与y轴的交点在y轴的负半轴上可知,<0,错误;B.由抛物线与y轴的交点在y轴的正半轴上可知,m>0,由直线可知,﹣m>0,错误;C.由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m<0,错误;D.由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m>0,正确,故选D.考点:1.二次函数的图象;2.一次函数的图象.2、A【分析】根据一元二次方程的判别式判断即可.【详解】要使得方程由两个相等实数根,判别式△=(-2)2-4m=4-4m=0,解得m=1.故选A.【点睛】本题考查一元二次方程判别式的计算,关键在于熟记判别式与根的关系.3、D【分析】首先利用菱形的性质得出AB=BC,即可得出∠ABC=60°,再利用三角函数得出答案.【详解】解:∵四边形ABCD是菱形,∴AB=BC,∵CE⊥AB,点E是AB中点,∴∠ABC=60°,∴∠EBF=30°,∴∠BFE=60°,

∴tan∠BFE=.故选:D【点睛】此题考查菱形的性质,关键是根据含30°的直角三角形的性质和三角函数解答.4、D【解析】求出∠DAE=∠BAC,根据选项条件判定三角形相似后,可得对应边成比例,再把比例式化为等积式后即可判断.【详解】解:∵∠1=∠2,

∴∠1+∠BAE=∠2+∠BAE,

∴∠DAE=∠BAC,

A、∵∠DAE=∠BAC,∠D=∠C,

∴△ADE∽△ACB,∴AEAB∴AB·故本选项错误;

B、∵∠B=∠AED,∠DAE=∠BAC,

∴△ADE∽△ACB∴AEAB∴AB·故本选项错误;

C、∵AEAB=ADAC,∠∴△ADE∽△ACB,∴AEAB∴AB·故本选项错误;

D、∵∠DAE=∠BAC,AEAC=ADAB,

∴△∴ADAB∴AB·故本选项正确;

故选:D.【点睛】本题考查了相似三角形的判定和性质的应用,比例式化等积式,特别要注意确定好对应边,不要找错了.5、B【分析】直接利用平行四边形、矩形、菱形、正方形的判定方法分别判断得出答案.【详解】解:A、对角线互相垂直的四边形是平行四边形,错误,不合题意B、对角线互相垂直的平行四边形是菱形,正确,是真命题;C、对角线互相平分且相等的四边形是矩形,本选项错误,不合题意;D、对角线互相平分且相等的四边形应是矩形,本选项错误,不合题意;故选:B.【点睛】此题主要考查了命题与定理,正确掌握特殊四边形的判定方法是解题关键.6、A【分析】利用圆的周长公式求得该弧的长度,然后由弧长公式进行计算.【详解】解:依题意得2π×2=,解得n=1.故选:A.【点睛】本题考查了弧长的计算.此题的已知条件是半径为2的圆的周长=半径为5的弧的弧长.7、B【分析】先求出平移后的抛物线的顶点坐标,再利用顶点式抛物线解析式写出即可.【详解】解:抛物线y=-x1的顶点坐标为(0,0),

先向左平移1个单位再向下平移1个单位后的抛物线的顶点坐标为(-1,-1),

所以,平移后的抛物线的解析式为y=-(x+1)1-1.

故选:B.【点睛】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用根据规律利用点的变化确定函数解析式.8、C【解析】由方程有两个相等的实数根,得到根的判别式等于0,求出m的值,经检验即可得到满足题意m的值.【详解】∵一元二次方程mx1+mx﹣=0有两个相等实数根,∴△=m1﹣4m×(﹣)=m1+1m=0,解得:m=0或m=﹣1,经检验m=0不合题意,则m=﹣1.故选C.【点睛】此题考查了根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.9、C【解析】试题分析:“+”表示收入,“—”表示支出,则—80元表示支出80元.考点:相反意义的量10、C【解析】分析:连接OA,在直角三角形OAC中,OC=3,OA=5,则可求出AC,再根据垂径定理即可求出AB.解:连接OA,如下图所示:∵在直角三角形OAC中,OA=5,弦心距,∴AC=,又∵OC⊥AB,∴AB=2AC=2×4=1.故选A.11、D【分析】先根据点A、B的坐标可知函数图象关于y轴对称,排除A、B选项;再根据点C的纵坐标大于点A的纵坐标,结合C、D选项,根据y随x的增减变化即可判断.【详解】函数图象关于y轴对称,因此A、B选项错误又再看C选项,的图象性质:当时,y随x的增大而减小,因此错误D选项,的图象性质:当时,y随x的增大而增大,正确故选:D.【点睛】本题考查了二次函数图象的性质,掌握图象的性质是解题关键.12、D【分析】由作法得CA=CB=CD=AB,根据圆周角定理得到∠ABD=90°,点C是△ABD的外心,根据三角函数的定义计算出∠D=30°,则∠A=60°,利用特殊角的三角函数值即可得到结论.【详解】由作法得CA=CB=CD=AB,故B正确;∴点B在以AD为直径的圆上,∴∠ABD=90°,故A正确;∴点C是△ABD的外心,在Rt△ABC中,sin∠D==,∴∠D=30°,∠A=60°,∴sinA=,故C正确;cosD=,故D错误,故选:D.【点睛】本题考查了解直角三角形,三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理和解直角三角形.二、填空题(每题4分,共24分)13、【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与随机抽取两个数相乘,积是偶数的情况,再利用概率公式求解即可求得答案.【详解】解:画树状图得:∵共有6种等可能的结果,随机抽取两个数相乘,积是偶数的有4种情况,∴随机抽取两个数相乘,积是偶数的概率是;故答案为:.【点睛】此题考查了用列表法或树状图法求概率.列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.14、此题答案不唯一,如AB=BC或BC=CD或CD=AD或AB=AD或AC⊥BD等.【分析】由在四边形ABCD中,AD=BC,AD∥BC,可判定四边形ABCD是平行四边形,然后根据一组邻边相等的平行四边形是菱形与对角线互相垂直的平行四边形是菱形,即可判定四边形ABCD是菱形,则可求得答案.【详解】解:如图,∵在四边形ABCD中,AD=BC,AD∥BC,

∴四边形ABCD是平行四边形,

∴当AB=BC或BC=CD或CD=AD或AB=AD时,四边形ABCD是菱形;

当AC⊥BD时,四边形ABCD是菱形.

故答案为:此题答案不唯一,如AB=BC或BC=CD或CD=AD或AB=AD或AC⊥BD等.【点睛】此题考查了菱形的判定定理.此题属于开放题,难度不大,注意掌握一组邻边相等的平行四边形是菱形与对角线互相垂直的平行四边形是菱形是解此题的关键.15、【分析】连接AC交BD于O,作FG⊥BE于G,证出△BFG是等腰直角三角形,得出BG=FG=BF=,由三角形的外角性质得出∠AED=30°,由直角三角形的性质得出OE=OA,求出∠FEG=60°,∠EFG=30°,进而求出OA的值,即可得出答案.【详解】连接AC交BD于O,作FG⊥BE于G,如图所示则∠BGF=∠EGF=90°∵四边形ABCD是正方形∴AC⊥BD,OA=OB=OC=OD,∠ADB=∠CBG=45°∴△BFG是等腰直角三角形∴BG=FG=BF=∵∠ADB=∠EAD+∠AED,∠EAD=15°∴∠AED=30°∴OE=OA∵EF⊥AE∴∠FEG=60°∴∠EFG=30°∴EG=FG=∴BE=BG+EG=∵OA+AO=解得:OA=∴AB=OA=故答案为【点睛】本题考查了正方形和等腰直角三角形的性质,综合性较强,需要熟练掌握相关性质.16、4【分析】根据直角三角形中线性质得CM=,根据相似三角形判定得△ABC∽△MBH,△AOC∽△HOM,根据相似三角形性质可得.【详解】因为中,,是中点,所以CM=又因为,所以所以△ABC∽△MBH,△AOC∽△HOM,所以所以故答案为:4【点睛】考核知识点:相似三角形.理解判定和性质是关键.17、100(1+x)2=1.【详解】设平均每次提价的百分率为x,根据原价为100元,表示出第一次提价后的价钱为100(1+x)元,第二次提价的价钱为100(1+x)2元,根据两次提价后的价钱为1元,列出关于x的方程100(1+x)2=1.考点:一元二次方程的应用.18、6【分析】根据正比例函数y=kx与反比例函数的图象交点关于原点对称,可得出A、B两点坐标的关系,根据垂直于y轴的直线上任意两点纵坐标相同,可得出A、C两点坐标的关系,设A点坐标为(x,-),表示出B、C两点的坐标,再根据三角形的面积公式即可解答.【详解】∵正比例函数y=kx与反比例函数的图象交点关于原点对称,∴设A点坐标为(x,−),则B点坐标为(−x,),C(−2x,−),∴S=×(−2x−x)⋅(−−)=×(−3x)⋅(−)=6.故答案为6.【点睛】此题考查正比例函数的性质与反比例函数的性质,解题关键在于得出A、C两点.三、解答题(共78分)19、(1);(2)当时,;当时,;当时,.【分析】(1)根据表格得到(0,5)与(1,2)都在函数图象上,代入函数解析式求出b与c的值,即可确定出解析式;(2)求出,根据m的取值分类讨论即可求解.【详解】根据题意,当时,;当时,;解得:,该二次函数关系式为;(2),两点都在函数的图象上,,,①当,即时,;②当,即时,;③当,即时,.【点睛】此题考查了待定系数法求二次函数解析式,二次函数图象上点的坐标特征,以及二次函数的最值,熟练掌握待定系数法是解本题的关键.20、(1),;(2)①当点运动到距离点个单位长度处,有;②当点运动到距离点个单位处时,四边形面积最小,最小值为.【分析】(1)根据一次函数解析式求出A和C的坐标,再由△ABC是等腰三角形可求出点B的坐标,根据平行四边形的性质求出点D的坐标,利用待定系数法即可得出二次函数的表达式;(2)①设点P运动了t秒,PQ⊥AC,进而求出AP、CQ和AQ的值,再由△APQ∽△CAO,利用对应边成比例可求出t的值,即可得出答案;②将问题化简为△APQ的面积的最大值,根据几何关系列出关于时间的二次函数,根据二次函数的性质,求出函数的最大值,即求出△APQ的面积的最大值,进而求出四边形PDCQ面积的最小值.【详解】解:(1)由,令,得,所以点;令,得,所以点,∵是以为底边的等腰三角形,∴点坐标为,又∵四边形是平行四边形,∴点坐标为,将点、点代入二次函数,可得,解得:,故该二次函数解析式为:.(2)∵,,∴.①设点运动了秒时,,此时,,,∵,∴,,∴,∴,即,解得:.即当点运动到距离点个单位长度处,有.②∵,且,∴当的面积最大时,四边形的面积最小,当动点运动秒时,,,,设底边上的高为,作于点,由可得:,解得:,∴,∴当时,达到最大值,此时,故当点运动到距离点个单位处时,四边形面积最小,最小值为.【点睛】本题考查的是二次函数的综合题,难度系数较大,解题关键是将四边形PDCQ面积的最小值转化为△APQ的面积的最大值并根据题意列出的函数关系式.21、(1)1;(2)x<-1或0<x<【分析】(1)将点B代入求出,再将点A代入即可求出的值;(2)由图像可得结论.【详解】(1)把B(,-3)代入中,得∴.∴.当时,.(2)如图,过点A、点B且平行于y轴及y轴所在的三条直线把平面分成了4部分由图象可得x<-1或0<x<时一次函数的图像在反比例函数图像的上方时,此时一次函数值大于反比例函数值,所以x的取值范围为x<-1或0<x<.【点睛】本题考查了反比例函数,将反比例函数的解析式与图像相结合是解题的关键.22、(1)见解析;(2)【分析】(1)根据圆心角、弧和弦之间的关系定理证明即可解决问题.

(2)连接OM,利用垂径定理得出,再根据勾股定理解决问题即可.【详解】解:(1)∵为的中点∴,∵,∴∴,∴∴(2)连接OM,∵,∴,∵根据勾股定理得:∴半径为【点睛】本题考查圆心角,弧,弦之间的关系,垂径定理,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23、(1)5m,(2)20%【分析】(1)设通道的宽度为x米.由题意(50﹣2x)(40﹣2x)=1200,解方程即可;(2)可先列出第一次降价后承包金额的代数式,再根据第一次的承包金额列出第二次降价的承包金额的代数式,然后令它等于51.2即可列出方程.【详解】(1)设通道宽度为xm,依题意得(50﹣2x)(40﹣2x)=1200,即x2﹣50x+225=0解得x1=5,x2=40(舍去)答:通道的宽度为5m.(2)设每次降价的百分率为x,依题意得80(1﹣x)2=51.2解得x1=0.2=20%,x2=1.8(舍去)答:每次降价的百分率为20%.【点睛】本题考查了一元二次方程的应用,根据题意,正确列出关系式是解题的关键.24、(1)y1=-2x+4,y2=-;(2)x<-1或0<x<1.【分析】(1)把点A坐标代入反比例函数求出k的值,也就求出了反比例函数解析式,再把点B的坐标代入反比例函数解析式求出a的值,得到点B的坐标,然后利用待定系数法即可求出一次函数解析式;(2)找出直线在一次函数图形的上方的自变量x的取值即可.【详解】解:(1)把点A(﹣1,6)代入反比例函数(m≠0)得:m=﹣1×6=﹣6,∴.将B(a,﹣2)代入得:,a=1,∴B(1,﹣2),将A(﹣1,6),B(1,﹣2)代入一次函数y1=kx+b得:,∴,∴;(2)由函数图象可得:x<﹣1或0<x<1.【点睛】本题考查反比例函数与一次函数的交点问题,利用数形结合思想解题是本题的关键.25、(1)证明见解析;(2);(3)、5、15、【分析】(1)利用同角的余角相等,证明∠CEF=∠AFB,即可解决问题;(2)过点F作FG⊥DC交DC与点G,交AB于点H,由△FGE∽△AHF得出AH=5GF,再利用勾股定理求解即可;(3)分①当∠EFC=90°时;②当∠ECF=90°时;③当∠CEF=90°时三种情况讨论解答即可.【详解】(1)解:在矩形ABCD中,∠B=∠C=∠D=90°由折叠可得:∠D=∠EFA=90°∵∠EFA=∠C=90°∴∠CEF+∠CF

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论