




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年广东省东莞市常平嘉盛实验学校数学九年级第一学期期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.已知、是一元二次方程的两个实数根,下列结论错误的是()A. B. C. D.2.一元二次方程的根是()A.1 B.3 C.1或3 D.-1或33.若反比例函数y=的图象经过点(2,3),则它的图象也一定经过的点是()A. B. C. D.4.一5的绝对值是()A.5 B. C. D.-55.若与的相似比为1:4,则与的周长比为()A.1:2 B.1:3 C.1:4 D.1:166.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5,6,9,另一个三角形的最长边长为4.5,则它的最短边长是()A. B. C. D.7.下列事件中,属于必然事件的是()A.明天我市下雨B.抛一枚硬币,正面朝下C.购买一张福利彩票中奖了D.掷一枚骰子,向上一面的数字一定大于零8.如图,在矩形中,于F,则线段的长是()A. B. C. D.9.入冬以来气温变化异常,在校学生患流感人数明显增多,若某校某日九年级8个班因病缺课人数分别为2、6、4、6、10、4、6、2,则这组数据的众数是()A.5人 B.6人 C.4人 D.8人10.如图,在中,,,,则等于()A. B. C. D.11.如图,点C是线段AB的黄金分割点(AC>BC),下列结论错误的是()A. B. C. D.12.等腰三角形底边长为10,周长为36,则底角的余弦值等于()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在矩形ABCD中,AB=2,BC=4,点E、F分别在BC、CD上,若AE=,∠EAF=45°,则AF的长为_____.14.边长为1的正方形,在边上取一动点,连接,作,交边于点,若的长为,则的长为__________.15.某电视台招聘一名记者,甲应聘参加了采访写作、计算机操作和创意设计的三项素质测试得分分别为70、60、90,三项成绩依次按照5:2:3计算出最后成绩,那么甲的成绩为__.16.若是方程的一个根,则式子的值为__________.17.如图,已知PA,PB是⊙O的两条切线,A,B为切点.C是⊙O上一个动点.且不与A,B重合.若∠PAC=α,∠ABC=β,则α与β的关系是_______.18.方程(x﹣1)(x﹣3)=0的解为_____.三、解答题(共78分)19.(8分)如图,三孔桥横截面的三个孔都呈抛物线形,两个小孔形状、大小都相同,正常水位时,大孔水面常度AB=20米,顶点M距水面6米(即MO=6米),小孔水面宽度BC=6米,顶点N距水面4.5米.航管部门设定警戒水位为正常水位上方2米处借助于图中的平面直角坐标系解答下列问题:(1)在汛期期间的某天,水位正好达到警戒水位,有一艘顶部高出水面3米,顶部宽4米的巡逻船要路过此处,请问该巡逻船能否安全通过大孔?并说明理由.(2)在问题(1)中,同时桥对面又有一艘小船准备从小孔迎面通过,小船的船顶高出水面1.5米,顶部宽3米,请问小船能否安全通过小孔?并说明理由.20.(8分)华联超市准备代销一款运动鞋,每双的成本是170元,为了合理定价,投放市场进行试销.据市场调查,销售单价是200元时,每天的销售量是40双,而销售单价每降低1元,每天就可多售出5双,设每双降低x元(x为正整数),每天的销售利润为y元.(1)求y与x的函数关系式;(2)每双运动鞋的售价定为多少元时,每天可获得最大利润?最大利润是多少?21.(8分)如图,已知是的直径,是的弦,点在外,连接,的平分线交于点.(1)若,求证:是的切线;(2)若,,求弦的长.22.(10分)如图,△ABC中,AB=AC,BE⊥AC于E,D是BC中点,连接AD与BE交于点F,求证:△AFE∽△BCE.23.(10分)如图,在10×10的网格中,有一格点△ABC(说明:顶点都在网格线交点处的三角形叫做格点三角形).(1)将△ABC先向右平移5个单位,再向上平移2个单位,得到△A'B'C',请直接画出平移后的△A'B'C';(2)将△A'B'C'绕点C'顺时针旋转90°,得到△A''B''C',请直接画出旋转后的△A''B''C';(3)在(2)的旋转过程中,求点A'所经过的路线长(结果保留π).24.(10分)如图,已知二次函数的顶点为(2,),且图象经过A(0,3),图象与x轴交于B、C两点.(1)求该函数的解析式;(2)连结AB、AC,求△ABC面积.25.(12分)如图,直线与⊙相离,于点,与⊙相交于点,.是直线上一点,连结并延长交⊙于另一点,且.(1)求证:是⊙的切线;(2)若⊙的半径为,求线段的长.26.如图,聪聪想在自己家的窗口A处测量对面建筑物CD的高度,他首先量出窗口A到地面的距离(AB)为16m,又测得从A处看建筑物底部C的俯角α为30°,看建筑物顶部D的仰角β为53°,且AB,CD都与地面垂直,点A,B,C,D在同一平面内.(1)求AB与CD之间的距离(结果保留根号).(2)求建筑物CD的高度(结果精确到1m).(参考数据:,,,)
参考答案一、选择题(每题4分,共48分)1、D【分析】根据一元二次方程的根的判别式、一元二次方程根的定义、一元二次方程根与系数的关系逐一进行分析即可.【详解】x1、x2是一元二次方程x2-2x=0的两个实数根,这里a=1,b=-2,c=0,b2-4ac=(-2)2-4×1×0=4>0,所以方程有两个不相等的实数根,即,故A选项正确,不符合题意;,故B选项正确,不符合题意;,故C选项正确,不符合题意;,故D选项错误,符合题意,故选D.【点睛】本题考查了一元二次方程的根的判别式,根的意义,根与系数的关系等,熟练掌握相关知识是解题的关键.2、D【解析】利用因式分解法求解即可得.【详解】故选:D.【点睛】本题考查了利用因式分解法求解一元二次方程,主要解法包括:直接开方法、配方法、公式法、因式分解法、换元法等,熟记各解法是解题关键.3、A【详解】解:根据题意得k=2×3=6,所以反比例函数解析式为y=,∵﹣3×(﹣2)=6,2×(﹣3)=﹣6,3×(﹣2)=﹣6,﹣2×3=﹣6,∴点(﹣3,﹣2)在反比例函数y=的图象上.故选A.【点睛】本题考查反比例函数图象上点的坐标特征.4、A【解析】试题分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣5到原点的距离是5,所以﹣5的绝对值是5,故选A.5、C【分析】根据相似三角形的性质解答即可.【详解】解:∵与的相似比为1:4,∴与的周长比为:1:4.故选:C.【点睛】本题考查了相似三角形的性质,属于应知应会题型,熟练掌握相似三角形的性质是解题关键.6、B【分析】根据题意可得出两个三角形相似,利用最长边数值可求出相似比,再用三角形的最短边乘以相似比即可.【详解】解:由题意可得出:两个三角形的相似比为:,所以另一个三角形最短边长为:.故选:B.【点睛】本题考查的知识点是相似三角形的相似比,根据题目求出两个三角形的相似比是解此题的关键.7、D【分析】根据定义进行判断.【详解】解:必然事件就是一定发生的事件,随机事件是可能发生也可能不发生的事件,由必然事件和随机事件的定义可知,选项A,B,C为随机事件,选项D是必然事件,故选D.【点睛】本题考查必然事件和随机事件的定义.8、C【分析】根据矩形的性质和勾股定理求出,再由面积法求出的长即可.【详解】解:四边形是矩形,,,,的面积,;故选:.【点睛】本题考查了矩形的性质、勾股定理、直角三角形的面积,熟练掌握矩形的性质,熟记直角三角形的面积求法是解题的关键.9、B【解析】找出这组数据出现次数最多的那个数据即为众数.【详解】解:∵数据2、6、4、6、10、4、6、2,中数据6出现次数最多为3次,∴这组数据的众数是6.故选:B.【点睛】本题考查众数的概念,出现次数最多的数据为这组数的众数.10、A【解析】分析:先根据勾股定理求得BC=6,再由正弦函数的定义求解可得.详解:在Rt△ABC中,∵AB=10、AC=8,∴BC=,∴sinA=.故选:A.点睛:本题主要考查锐角三角函数的定义,解题的关键是掌握勾股定理及正弦函数的定义.11、B【解析】∵AC>BC,∴AC是较长的线段,根据黄金分割的定义可知:=≈0.618,故A、C、D正确,不符合题意;AC2=AB•BC,故B错误,符合题意;故选B.12、A【分析】由题意得出等腰三角形的腰长为13cm,作底边上的高,根据等腰三角形的性质得出底边一半的长度,最后由三角函数的定义即可得出答案.【详解】解:如图,BC=10cm,AB=AC,可得AC=(36-10)÷2=26÷2=13(cm).又AD是底边BC上的高,∴CD=BD=5cm,
∴cosC=,即底角的余弦值为,故选:A.【点睛】本题主要考查等腰三角形的性质和三角函数的定义,熟练掌握等腰三角形的“三线合一”是解题的关键.二、填空题(每题4分,共24分)13、【解析】分析:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,则NF=x,再利用矩形的性质和已知条件证明△AME∽△FNA,利用相似三角形的性质:对应边的比值相等可求出x的值,在直角三角形ADF中利用勾股定理即可求出AF的长.详解:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,∵四边形ABCD是矩形,∴∠D=∠BAD=∠B=90°,AD=BC=4,∴NF=x,AN=4﹣x,∵AB=2,∴AM=BM=1,∵AE=,AB=2,∴BE=1,∴ME=,∵∠EAF=45°,∴∠MAE+∠NAF=45°,∵∠MAE+∠AEM=45°,∴∠MEA=∠NAF,∴△AME∽△FNA,∴,∴,解得:x=∴AF=故答案为.点睛:本题考查了矩形的性质、相似三角形的判断和性质以及勾股定理的运用,正确添加辅助线构造相似三角形是解题的关键,14、或【分析】根据正方形的内角为90°,以及同角的余角相等得出三角形的两个角相等,从而推知△ABE∽△ECF,得出,代入数值得到关于CE的一元二次方程,求解即可.【详解】解:∵正方形ABCD,
∴∠B=∠C,∠BAE+∠BEA=90°,
∵EF⊥AE,
∴∠BEA+∠CEF=90°,
∴∠BAE=∠CEF,
∴△ABE∽△ECF,.解得,CE=或.故答案为:或.【点睛】考查了四边形综合题型,需要掌握三角形相似的判定与性质,正方形的性质以及一元二次方程的应用,解题的关键是根据相似三角形得出一元二次方程,难度不大.15、74【分析】利用加权平均数公式计算.【详解】甲的成绩=,故答案为:74.【点睛】此题考查加权平均数,正确理解各数所占的权重是解题的关键.16、1【分析】将a代入方程中得到,将其整体代入中,进而求解.【详解】由题意知,,即,∴,故答案为:1.【点睛】本题考查了方程的根,求代数式的值,学会运用整体代入的思想是解题的关键.17、或【分析】分点C在优弧AB上和劣弧AB上两种情况讨论,根据切线的性质得到∠OAC的度数,再根据圆周角定理得到∠AOC的度数,再利用三角形内角和定理得出α与β的关系.【详解】解:当点C在优弧AB上时,如图,连接OA、OB、OC,∵PA是⊙O的切线,∴∠PAO=90°,∴∠OAC=α-90°=∠OCA,∵∠AOC=2∠ABC=2β,∴2(α-90°)+2β=180°,∴;当点C在劣弧AB上时,如图,∵PA是⊙O的切线,∴∠PAO=90°,∴∠OAC=90°-α=∠OCA,∵∠AOC=2∠ABC=2β,∴2(90°-α)+2β=180°,∴.综上:α与β的关系是或.故答案为:或.【点睛】本题考查了切线的性质,圆周角定理,三角形内角和定理,等腰三角形的性质,利用圆周角定理是解题的关键,同时注意分类讨论.18、x1=3,x2=1【分析】利用因式分解法求解可得.【详解】解:∵(x﹣1)(x﹣3)=0,∴x﹣1=0或x﹣3=0,解得x1=3,x2=1,故答案为:x1=3,x2=1.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.三、解答题(共78分)19、(1)巡逻船能安全通过大孔,理由见解析;(2)小船不能安全通过小孔,理由见解析.【分析】(1)设大孔所在的抛物线的解析式为,求得大孔所在的抛物线的解析式为,当时,得到,于是得到结论;(2)建立如图所示的平面直角坐标系,设小孔所在的抛物线的解析式为,求得小孔所在的抛物线的解析式为,当时,得到,于是得到结论.【详解】解:(1)设大孔所在的抛物线的解析式为,由题意得,,,,大孔所在的抛物线的解析式为,当时,,该巡逻船能安全通过大孔;(2)建立如图所示的平面直角坐标系,设小孔所在的抛物线的解析式为,由题意得,,,,小孔所在的抛物线的解析式为,当时,,小船不能安全通过小孔.【点睛】本题考查了二次函数的应用以及二次函数图象上点的坐标特征,结合函数图象及二次函数图象上点的坐标特征找出关于的一元一次方程是解题的关键.20、(1)y=﹣5x2+110x+1200;(2)售价定为189元,利润最大1805元【解析】利润等于(售价﹣成本)×销售量,根据题意列出表达式,借助二次函数的性质求最大值即可;【详解】(1)y=(200﹣x﹣170)(40+5x)=﹣5x2+110x+1200;(2)y=﹣5x2+110x+1200=﹣5(x﹣11)2+1805,∵抛物线开口向下,∴当x=11时,y有最大值1805,答:售价定为189元,利润最大1805元;【点睛】本题考查实际应用中利润的求法,二次函数的应用;能够根据题意列出合理的表达式是解题的关键.21、(1)证明见解析;(2).【分析】(1)连接OC,利用直径所对的圆周角是直角,结合半径相等,利用等边对等角,证得∠OCE=90,即可证得结论;(2)连接DB,证得△ADB为等腰直角三角形,可求得直径的长,再根据勾股定理求出AC即可.【详解】(1)连接OC,∵是的直径,∴∠ACB=90,∵OA=OC,∴∠OAC=∠OCA,∵∠BCE=∠BAC,∴∠BCE=∠BAC=∠OCA,∵∠OCA+∠OCB=90,∴∠BCE+∠OCB=90,∴∠OCE=90,
∴CE是⊙O的切线;(2)连接DB,∵AB是⊙O的直径,
∴∠ADB=90,∵CD平分∠ACB,∴,∴,∴△ADB为等腰直角三角形,
∴,∵AB是⊙O的直径,∴∠ACB=90,∴.【点睛】本题考查了圆的切线的判定方法,圆周角定理,勾股定理的应用,掌握直径所对的圆周角为直角是解题的关键.22、证明详见解析.【解析】试题分析:根据等腰三角形的性质,由AB=AC,D是BC中点得到AD⊥BC,易得∠ADC=∠BEC=90°,再证明∠FAD=∠CBE,于是根据有两组角对应相等的两个三角形相似即可得到结论.试题解析:证明:∵AB=AC,D是BC中点,∴AD⊥BC,∴∠ADC=90°,∴∠FAE+∠AFE=90°,∵BE⊥AC,∴∠BEC=90°,∴∠CBE+∠BFD=90°,∵∠AFE=∠BFD,∴∠FAD=∠CBE,∴△AFE∽△BCE.考点:相似三角形的判定.23、(1)见解析,(2)见解析,(3)π【解析】(1)将三个顶点分别向右平移5个单位,再向上平移2个单位得到对应点,再首尾顺次连接即可得;(2)作出点A′,B′绕点C顺时针旋转90°得到的对应点,再首尾顺次连接可得;(3)根据弧长公式计算可得.【详解】解:(1)如图所示,△A′B′C′即为所求.(2)如图所示,△A″B″C′即为所求.(3)∵A′C′==,∠A′C′A″=90°,∴点A′所经过的路线长为=π,故答案为π.【点睛】本题主要考查作图﹣旋转变换和平移变换,解题的关键是熟练掌握旋转和平移变换的定义和性质,并据此得出变换后的对应点,也考查了弧长公式.24、(1);(2).【分析】(1)设
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023国家能源投资集团有限责任公司第一批社会招聘笔试备考题库及1套参考答案详解
- 2025年黑龙江省五常市辅警招聘考试试题题库含答案详解(能力提升)
- 物理●福建卷丨2022年福建省普通高中学业水平选择性考试物理试卷及答案
- DeepSeek普教应用场景规划方案
- 数字化粮仓智慧粮食全产业链平台建设方案
- 初三中考数学最后一课-主题班会【课件】
- 江阴二中高一英语5月阶段试卷
- 消防中控证试题及答案
- 西门子plc试题及答案
- 河北省廊坊市霸州市2025年初中学业水平考试历史试卷(含答案)
- 初始污染菌检测原始记录
- 安全标准化现场评审所需资料清单(共14页)
- 罪犯教育-身份意识和改造心态教育
- 胃肠减压技术操作流程.
- 链家房屋买卖合同范本(共10篇)
- 工序能耗计算方法及等级指标
- 锯齿形板式热水冷却器的设计3.
- 药店组织机构图及部门设置说明
- DSP课程设计--基于IIR的语音信号滤波
- 危大工程验收表-
- 叶轮动平衡试验报告A
评论
0/150
提交评论