2023-2024学年衡阳市重点中学数学九年级第一学期期末达标测试试题含解析_第1页
2023-2024学年衡阳市重点中学数学九年级第一学期期末达标测试试题含解析_第2页
2023-2024学年衡阳市重点中学数学九年级第一学期期末达标测试试题含解析_第3页
2023-2024学年衡阳市重点中学数学九年级第一学期期末达标测试试题含解析_第4页
2023-2024学年衡阳市重点中学数学九年级第一学期期末达标测试试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年衡阳市重点中学数学九年级第一学期期末达标测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,点E为菱形ABCD边上的一个动点,并延A→B→C→D的路径移动,设点E经过的路径长为x,△ADE的面积为y,则下列图象能大致反映y与x的函数关系的是()A. B.C. D.2.“抛一枚均匀硬币,落地后正面朝上”这一事件是()A.必然事件 B.随机事件 C.确定事件 D.不可能事件3.下列各式计算正确的是()A.2x•3x=6xB.3x-2x=xC.(2x)2=4xD.6x÷2x=3x4.对于二次函数y=(x-1)2+2的图象,下列说法正确的是()A.开口向下B.当x=-1,时,y有最大值是2C.对称轴是x=-1D.顶点坐标是(1,2)5.方程(m﹣1)x2﹣2mx+m﹣1=0中,当m取什么范围内的值时,方程有两个不相等的实数根?()A.m> B.m>且m≠1 C.m< D.m≠16.不等式组的解集在数轴上表示为()A. B. C. D.7.反比例函数y=图象经过A(1,2),B(n,﹣2)两点,则n=()A.1 B.3 C.﹣1 D.﹣38.二次函数的图象是一条抛物线,下列关于该抛物线的说法正确的是()A.抛物线开口向下 B.抛物线与轴有两个交点C.抛物线的对称轴是直线=1 D.抛物线经过点(2,3)9.将半径为5cm的圆形纸片沿着弦AB进行翻折,弦AB的中点与圆心O所在的直线与翻折后的劣弧相交于C点,若OC=3cm,则折痕AB的长是()A. B. C.4cm或6cm D.或10.在等腰直角三角形ABC中,AB=AC=4,点O为BC的中点,以O为圆心作⊙O交BC于点M、N,⊙O与AB、AC相切,切点分别为D、E,则⊙O的半径和∠MND的度数分别为()A.2,22.5° B.3,30° C.3,22.5° D.2,30°二、填空题(每小题3分,共24分)11.如图,一个半径为,面积为的扇形纸片,若添加一个半径为的圆形纸片,使得两张纸片恰好能组合成一个圆锥体,则添加的圆形纸片的半径为____.12.如图,在平面直角坐标系中,原点O是等边三角形ABC的重心,若点A的坐标是(0,3),将△ABC绕点O逆时针旋转,每秒旋转60°,则第2018秒时,点A的坐标为.13.下列投影或利用投影现象中,________是平行投影,________是中心投影.(填序号)14.等腰三角形的底角为15°,腰长为20cm,则此三角形的面积为.15.一组数据3,2,1,4,的极差为5,则为______.16.如图,在矩形中,是上的点,点在上,要使与相似,需添加的一个条件是_______(填一个即可).17.为估计全市九年级学生早读时间情况,从某私立学校随机抽取100人进行调查,在这个问题中,调查的样本________(填“具有”或“不具有”)代表性.18.如图,,,是上的三个点,四边形是平行四边形,连接,,若,则_____.三、解答题(共66分)19.(10分)如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2cm/s的速度移动,点Q沿DA边从点D开始向点A以1cm/s的速度移动,如果P、Q同时出发,用t(s)表示移动的时间(0≤t≤6),那么:(1)当t为何值时,△QAP是等腰直角三角形?(2)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?20.(6分)某服装店因为换季更新,采购了一批新服装,有A、B两种款式共100件,花费了6600元,已知A种款式单价是80元/件,B种款式的单价是40元/件(1)求两种款式的服装各采购了多少件?(2)如果另一个服装店也想要采购这两种款式的服装共60件,且采购服装的费用不超过3300元,那么A种款式的服装最多能采购多少件?21.(6分)已知和是关于的一元二次方程的两个不同的实数根.(1)求的取值范围;(2)如果且为整数,求的值.22.(8分)某高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,并投入资金1500万元作为固定投资.已知生产每件产品的成本是40元,在销售过程中发现:当销售单价定为120元时,年销售量为20万件;销售单价每增加10元,年销售量将减少1万件,设销售单价为(元),年销售量为(万件),年获利为(万元)。(年获利=年销售额—生产成本—投资)(1)试写出与之间的函数关系式;(2)请通过计算说明,到第一年年底,当取最大值时,销售单价定为多少?此时公司是盈利了还是亏损了?23.(8分)如图,某农户计划用长12m的篱笆围成一个“日”字形的生物园饲养两种不同的家禽,生物园的一面靠墙,且墙的可利用长度最长为7m.(1)若生物园的面积为9m2,则这个生物园垂直于墙的一边长为多少?(2)若要使生物园的面积最大,该怎样围?24.(8分)如图,在边长为个单位长度的小正方形组成的网格中,给出了△ABC格点(顶点是网格线的交点).请在网格中画出△ABC以A为位似中心放大到原来的倍的格点△AB1C1,并写出△ABC与△AB1C1,的面积比(△ABC与△AB1C1,在点A的同一侧)25.(10分)如图,在Rt△ABC中,∠A=90°.AB=8cm,AC=6cm,若动点D从B出发,沿线段BA运动到点A为止(不考虑D与B,A重合的情况),运动速度为2cm/s,过点D作DE∥BC交AC于点E,连接BE,设动点D运动的时间为x(s),AE的长为y(cm).(1)求y关于x的函数表达式,并写出自变量x的取值范围;(2)当x为何值时,△BDE的面积S有最大值?最大值为多少?26.(10分)邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,称为第二次操作;……依次类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形,如图1,平行四边形中,若,则平行四边形为1阶准菱形.(1)判断与推理:①邻边长分别为2和3的平行四边形是__________阶准菱形;②小明为了剪去一个菱形,进行如下操作:如图2,把平行四边形沿着折叠(点在上)使点落在边上的点,得到四边形,请证明四边形是菱形.(2)操作、探究与计算:①已知平行四边形的邻边分别为1,裁剪线的示意图,并在图形下方写出的值;②已知平行四边形的邻边长分别为,满足,请写出平行四边形是几阶准菱形.

参考答案一、选择题(每小题3分,共30分)1、D【解析】点E沿A→B运动,△ADE的面积逐渐变大;点E沿B→C移动,△ADE的面积不变;点E沿C→D的路径移动,△ADE的面积逐渐减小.故选D.点睛:本题考查函数的图象.分三段依次考虑△ADE的面积变化情况是解题的关键.2、B【详解】随机事件.根据随机事件的定义,随机事件就是可能发生,也可能不发生的事件,即可判断:抛1枚均匀硬币,落地后可能正面朝上,也可能反面朝上,故抛1枚均匀硬币,落地后正面朝上是随机事件.故选B.3、B【解析】计算得到结果,即可作出判断【详解】A、原式=6x2,不符合题意;B、原式=x,符合题意;C、原式=4x2,不符合题意;D、原式=3,不符合题意,故选B【点睛】考查整式的混合运算,熟练掌握运算法则是解本题的关键.4、D【解析】根据二次函数的性质对各选项进行判断.【详解】A、由二次函数的解析式y=(x+1)2+2,可知系数>1,故函数图像开口向上.故A项错误;B、将x=﹣1代入解析式,得到y=6,故B项错误;C、由二次函数的顶点式y=(x+1)2+2可知对称轴为x=1,故C项错误;D、函数的顶点式y=(x+1)2+2可知该函数的顶点坐标是(1,2),故D项正确.故选D.【点睛】本题主要考查二次函数的图像与性质,理解二次函数的顶点式是解答此题的关键.5、B【分析】由题意可知原方程的根的判别式△>0,由此可得关于m的不等式,求出不等式的解集后再结合方程的二次项系数不为0即可求出答案.【详解】解:由题意可知:△=4m2﹣4(m﹣1)2>0,解得:∴m>,∵m﹣1≠0,∴m≠1,∴m的范围是:m>且m≠1.故选:B.【点睛】本题考查了一元二次方程的根的判别式和一元一次不等式的解法等知识,属于基本题型,熟练掌握一元二次方程的根的判别式与方程根的个数的关系是解题关键.6、B【分析】分别求出每一个不等式的解集,根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则即可得答案.【详解】解:,解不等式2x−1≤5,得:x≤3,解不等式8−4x<0,得:x>2,故不等式组的解集为:2<x≤3,故选:B.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟悉在数轴上表示不等式解集的原则“大于向右,小于向左,包括端点用实心,不包括端点用空心”是解题的关键.7、C【解析】根据反比例函数图象上点的坐标特征得到:k=1×2=-2n,然后解方程即可.【详解】解:∵反比例函数y=图象经过A(1,2),B(n,﹣2)两点,∴k=1×2=﹣2n.解得n=﹣1.故选C.【点睛】本题考查反比例函数图象上点的坐标特征.图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.8、B【详解】A、a=2,则抛物线y=2x2-3的开口向上,所以A选项错误;B、当y=0时,2x2-3=0,此方程有两个不相等的实数解,即抛物线与x轴有两个交点,所以B选项正确;C、抛物线的对称轴为直线x=0,所以C选项错误;D、当x=2时,y=2×4-3=5,则抛物线不经过点(2,3),所以D选项错误,故选B.9、D【分析】分两种情况讨论:AB与C点在圆心同侧,AB与C点在圆心两侧,根据翻折的性质及垂径定理和勾股定理计算即可.【详解】如图:E是弦AB的中点是直角三角形,沿着弦AB进行翻折得到在中如图:E是弦AB的中点是直角三角形沿着弦AB进行翻折得到在中故选:D【点睛】本题考查的是垂径定理,掌握翻折的性质及垂径定理并能正确的进行分类讨论画出图形是关键.10、A【解析】解:连接OA,∵AB与⊙O相切,∴OD⊥AB,∵在等腰直角三角形ABC中,AB=AC=4,O为BC的中点,∴AO⊥BC,∴OD∥AC,∵O为BC的中点,∴OD=AC=2;∵∠DOB=45°,∴∠MND=∠DOB=1.5°,故选A.【点睛】本题考查切线的性质;等腰直角三角形.二、填空题(每小题3分,共24分)11、1【分析】能组合成圆锥体,那么扇形的弧长等于圆形纸片的周长.应先利用扇形的面积=圆锥的弧长×母线长÷1,得到圆锥的弧长=1扇形的面积÷母线长,进而根据圆锥的底面半径=圆锥的弧长÷1π求解.【详解】解:∵圆锥的弧长=1×11π÷6=4π,

∴圆锥的底面半径=4π÷1π=1cm,

故答案为1.【点睛】解决本题的难点是得到圆锥的弧长与扇形面积之间的关系,注意利用圆锥的弧长等于底面周长这个知识点.12、【分析】△ABC绕点O逆时针旋转一周需6秒,而2018=6×336+2,所以第2018秒时,点A旋转到点A′,∠AOA′=120°,OA=OA′=3,作A′H⊥x轴于H,然后通过解直角三角形求出A′H和OH即可得到A′点的坐标.【详解】解:∵360°÷60°=6,2018=6×336+2,∴第2018秒时,点A旋转到点B,如图,∠AOA′=120°,OA=OA′=3,作A′H⊥x轴于H,∵∠A′OH=30°,∴A′H=OA′=,OH=A′H=,∴A′(﹣,﹣).故答案为(﹣,﹣).【点睛】考核知识点:解直角三角形.结合旋转和解直角三角形知识解决问题是关键.13、④⑥①②③⑤【分析】根据中心投影的性质,找到是灯光的光源即可判断出中心投影;再利用平行光下的投影属于平行投影可判断出平行投影.【详解】解:①②③⑤都是灯光下的投影,属于中心投影;④因为太阳光属于平行光线,所以日晷属于平行投影;⑥中是平行光线下的投影,属于平行投影,故答案为:④⑥;①②③⑤.【点睛】此题主要考查了中心投影和平行投影的性质,解题的关键是根据平行投影和中心投影的区别进行解答即可.14、100【解析】试题分析:先作出图象,根据含30°角的直角三角形的性质求出腰上的高,再根据三角形的面积公式即可求解.如图,∵∠B=∠C=15°∴∠CAD=30°∴CD=AC=10∴三角形的面积考点:本题考查的是三角形外角的性质,含30°角的直角三角形的性质点评:解答本题的关键是熟练掌握三角形的一个外角等于与它不相邻的两个内角的和;30°角的所对的直角边等于斜边的一半.15、-1或1【分析】由题意根据极差的公式即极差=最大值-最小值.可能是最大值,也可能是最小值,分两种情况讨论.【详解】解:当x是最大值,则x-(1)=5,所以x=1;当x是最小值,则4-x=5,所以x=-1;故答案为-1或1.【点睛】本题考查极差的定义,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值,同时注意分类的思想的运用.16、或∠BAE=∠CEF,或∠AEB=∠EFC(任填一个即可)【分析】根据相似三角形的判定解答即可.【详解】∵矩形ABCD,∴∠ABE=∠ECF=90,∴添加∠BAE=∠CEF,或∠AEB=∠EFC,或AE⊥EF,∴△ABE∽△ECF,故答案为:∠BAE=∠CEF,或∠AEB=∠EFC,或AE⊥EF.【点睛】此题考查相似三角形的判定,关键是根据相似三角形的判定方法解答.17、不具有【分析】根据抽取样本的注意事项即要考虑样本具有广泛性与代表性,其代表性就是抽取的样本必须是随机的,以此进行分析.【详解】解:要估计全市九年级学生早读时间情况,应从该市所以学校九年级中随机抽取100人进行调查,所以在这个问题中调查的样本不具有代表性.故此空填“不具有”.【点睛】本题考查抽样调查的可靠性,解题时注意:样本具有代表性是指抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.18、64【分析】先根据圆周角定理求出∠O的度数,然后根据平行四边形的对角相等求解即可.【详解】∵,∴∠O=2,∵四边形是平行四边形,∴∠O=.故答案为:64.【点睛】本题考查了圆周角定理,平行四变形的性质,熟练掌握圆周角定理是解答本题的关键.在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.三、解答题(共66分)19、(1)t=2s;(2)t=1.2s或3s.【分析】(1)根据等腰三角形的性质可得QA=AP,从而可以求得结果;(2)分与两种情况结合相似三角形的性质讨论即可.【详解】(1)由QA=AP,即6-t=2t,得t=2(秒);(2)当时,△QAP~△ABC,则,解得t=1.2(秒)当时,△QAP~△ABC,则,解得t=3(秒)∴当t=1.2或3时,△QAP~△ABC.20、(1)A种款式的服装采购了65件,B种款式的服装采购了1件;(2)A种款式的服装最多能采购2件.【分析】(1)设A种款式的服装采购了x件,则B种款式的服装采购了(100﹣x)件,根据总价=单价×数量结合花费了6600元,即可得出关于x的一元一次方程,解之即可得出结论;(2)设A种款式的服装采购了m件,则B种款式的服装采购了(60﹣m)件,根据总价=单价×数量结合总费用不超过3300元,即可得出关于m的一元一次不等式,解之取其中最大的整数值即可得出结论.【详解】解:(1)设A种款式的服装采购了x件,则B种款式的服装采购了(100﹣x)件,依题意,得:80x+40(100﹣x)=6600,解得:x=65,∴100﹣x=1.答:A种款式的服装采购了65件,B种款式的服装采购了1件.(2)设A种款式的服装采购了m件,则B种款式的服装采购了(60﹣m)件,依题意,得:80m+40(60﹣m)≤3300,解得:m≤2.∵m为正整数,∴m的最大值为2.答:A种款式的服装最多能采购2件.【点睛】本题考查的是一元一次方程以及不等式在实际生活中的应用,难度不高,认真审题,列出方程是解决本题的关键.21、(1);(2)-2【分析】(1)根据一元二次方程根有两个不同的实数根可得判别式△>0,解不等式求出k的取值范围即可;(2)根据一元二次方程根与系数的故选可得,,根据列不等式,结合(1)的结论可求出k的取值范围,根据k为整数求出k值即可.【详解】(1)∵方程有两个不同的实数根,∴△,解得:.∴的取值范围是.(2)∵和是关于的一元二次方程的两个不同的实数根,∴,,∵,∴,解得.又由(1),∴,∵k为整数,∴k的值为.【点睛】本题考查一元二次方程根的判别式及根与系数的关系,若一元二次方程ax2+bx+c=0(a≠0)的两个根为x1和x2,那么x1+x2=,x1·x2=;判别式△=b2-4ac,当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根;熟练掌握一元二次方程的判别式及韦达定理是解题关键.22、(1);(2)当销售单价为180元,年获利最大,并且第一年年底公司亏损了,还差40万元就可收回全部投资.【分析】(1)销售单价为x元,先用x表示出年销售量,再利用每件产品销售利润×年销售量=年获利列出函数解答;(2)把(1)中所得的二次函数,利用配方法得到顶点式,然后进行判断,即可得到答案.【详解】解:(1)由题意知,当销售单价定为元时,年销售量减少万件,∴,∴与之间的函数关系式是:.由题意得:,∴与之间的函数关系是:.(2)∵,∵,∴当时,取最大值,为,∴当销售单价为180元,年获利最大,并且第一年年底公司还差40万元就可收回全部投资;∴到第一年年底公司亏了40万元.【点睛】此题考查了二次函数的性质,二次函数的应用问题,配方法的运用,解题的关键是熟练掌握题意,正确找到题目的数量关系,列出关系式.23、(1)3m;(1)生物园垂直于墙的一边长为1m.平行于墙的一边长为6m时,围成生物园的面积最大,且为11m1【分析】(1)设垂直于墙的一边长为x米,则平行于墙的一边长为(11-3x)米,根据长方形的面积公式结合生物园的面积为9平方米,列出方程,解方程即可;(1)设围成生物园的面积为y,由题意可得:y=x(11﹣3x)且≤<4,从而求出y的最大值即可.【详解】设这个生物园垂直于墙的一边长为xm,(1)由题意,得x(11﹣3x)=9,解得,x1=1(不符合题意,舍去),x1=3,答:这个生物园垂直于墙的一边长为3m;(1)设围成生物园的面积为ym1.由题意,得,∵∴≤<4∴当x=1时,y最大值=11,11﹣3x=6,答:生物园垂直于墙的一边长为1m.平行于墙的一边长为6m时,围成生物园的面积最大,且为11m1.【点睛】本题主要考查一元二次方程的应用和二次函数的应用,解题的关键是正确解读题意,根据题目给出的条件,准确列出方程和二次函数解析式.24、见解析,【分析】根据网格特点,延长AB、AC到B1、C1,使AB1=3AB,AC1=3AC,连接B1C1,即可得△AB1C1,根据相似三角形面积比等于相似比的平方即可得答案.【详解】如图所示:延长AB、AC到B1、C1,使AB1=3AB,AC1=3AC,连接B1C1,∴△AB1C1,即为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论