版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年甘肃省秦安县九年级数学第一学期期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.用一块长40cm,宽28cm的矩形铁皮,在四个角截去四个全等的正方形后,折成一个无盖的长方形盒子,若折成的长方体的底面积为,设小正方形的边长为xcm,则列方程得()A.(20﹣x)(14﹣x)=360 B.(40﹣2x)(28﹣2x)=360C.40×28﹣4x2=360 D.(40﹣x)(28﹣x)=3602.方程变为的形式,正确的是()A. B.C. D.3.已知△ABC∽△DEF,∠A=85°;∠F=50°,那么cosB的值是()A.1 B. C. D.4.化简的结果是()A. B. C. D.5.下列图形中,不是中心对称图形的是()A. B. C. D.6.如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,则∠OFA的度数是().A.15° B.20° C.25° D.30°7.下列图形中,不是轴对称图形的是()A. B. C. D.8.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:x
…
﹣3
﹣2
﹣1
0
1
…
y
…
﹣6
0
4
6
6
…
给出下列说法:①抛物线与y轴的交点为(0,6);②抛物线的对称轴在y轴的左侧;③抛物线一定经过(3,0)点;④在对称轴左侧y随x的增大而减增大.从表中可知,其中正确的个数为()A.4 B.3 C.2 D.19.已知锐角∠AOB如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN,则∠AOB=20°C.MN∥CD D.MN=3CD10.如图,一张扇形纸片OAB,∠AOB=120°,OA=6,将这张扇形纸片折叠,使点A与点O重合,折痕为CD,则图中未重叠部分(即阴影部分)的面积为()A.9 B.12π﹣9 C. D.6π﹣11.抛物线y=-2(x+3)2-4的顶点坐标是:A.(3,-4) B.(-3,4) C.(-3,-4) D.(-4,3)12.一个几何体由大小相同的小方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看到几何体的形状图是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,已知△ABC,AB=6,AC=5,D是边AB的中点,E是边AC上一点,∠ADE=∠C,∠BAC的平分线分别交DE、BC于点F、G,那么的值为__________.14.现有三张分别标有数字2、3、4的卡片,它们除了数字外完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a(不放回);从剩下的卡片中再任意抽取一张,将上面的数字记为b,则点(a,b)在直线图象上的概率为__.15.圆锥的侧面展开图的圆心角是120°,其底面圆的半径为2cm,则其侧面积为_____.16.计算:=.17.如图,矩形ABCD中,AB=2,BC=,F是AB中点,以点A为圆心,AD为半径作弧交AB于点E,以点B为圆心,BF为半径作弧交BC于点G,则图中阴影部分面积的差S1﹣S2为_____.18.在、、、1、2五个数中,若随机取一个数作为反比例函数中的值,则该函数图象在第二、第四象限的概率是__________.三、解答题(共78分)19.(8分)(1)计算:(2119-)1-(cos61°)-2+-tan45°;(2)解方程:2x2-4x+1=1.20.(8分)如图,AB是的直径,点C、D在上,且AD平分,过点D作AC的垂线,与AC的延长线相交于E,与AB的延长线相交于点F,G为AB的下半圆弧的中点,DG交AB于H,连接DB、GB.证明EF是的切线;求证:;已知圆的半径,,求GH的长.21.(8分)如图,已知抛物线y1=x2-2x-3与x轴相交于点A,B(点A在B的左侧),与y轴相交于点C,直线y2=kx+b经过点B,C.(1)求直线BC的函数关系式;(2)当y1>y2时,请直接写出x的取值范围.22.(10分)如图,在平面直角坐标中,反比例函数的图象经过点,反比例函数的图象经过点,作直线分别交于两点,已知.(1)求反比例函数的解析式;(2)求的面积.23.(10分)如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.(1)求证:直线DF与⊙O相切;(2)求证:BF=EF;24.(10分)装潢公司要给边长为6米的正方形墙面ABCD进行装潢,设计图案如图所示(四周是四个全等的矩形,用材料甲进行装潢;中心区是正方形MNPQ,用材料乙进行装潢).两种装潢材料的成本如下表:材料甲乙价格(元/米2)5040设矩形的较短边AH的长为x米,装潢材料的总费用为y元.(1)MQ的长为米(用含x的代数式表示);(2)求y关于x的函数解析式;(3)当中心区的边长不小于2米时,预备资金1760元购买材料一定够用吗?请说明理由.25.(12分)已知反比例函数,(k为常数,).(1)若点在这个函数的图象上,求k的值;(2)若在这个函数图象的每一分支上,y随x的增大而增大,求k的取值范围.26.如图,已知反比例函数(k1>0)与一次函数相交于A、B两点,AC⊥x轴于点C.若△OAC的面积为1,且tan∠AOC=2.(1)求出反比例函数与一次函数的解析式;(2)请直接写出B点的坐标,并指出当x为何值时,反比例函数y1的值大于一次函数y2的值.
参考答案一、选择题(每题4分,共48分)1、B【分析】由题意设剪掉的正方形的边长为xcm,根据长方体的底面积为列出方程即可.【详解】解:设剪掉的正方形的边长为xcm,则(28﹣2x)(40﹣2x)=1.故选:B.【点睛】本题考查一元二次方程的应用,解答本题的关键是仔细审题并建立方程.2、B【分析】方程常数项移到右边,两边加上1变形即可得到结果.【详解】方程移项得:x2﹣2x=3,配方得:x2﹣2x+1=1,即(x﹣1)2=1.故选B.【点睛】本题考查了解一元二次方程﹣配方法,熟练掌握配方法的步骤是解答本题的关键.3、C【分析】由题意首先根据相似三角形求得∠B的度数,然后根据特殊角的三角函数值确定正确的选项即可.【详解】解:△ABC∽△DEF,∠A=85°,∠F=50°,∴∠C=∠F=50°,∴∠B=180°-∠A-∠C=180°-85°-50°=45°,∴cosB=cos45°=.故选:C.【点睛】本题主要考查相似三角形的性质以及三角函数相关,解题的关键是熟练掌握相似三角形的对应角相等.4、D【解析】将除法变为乘法,化简二次根式,再用乘法分配律展开计算即可.【详解】原式=×=×(+1)=2+.故选D.【点睛】本题主要考查二次根式的加减乘除混合运算,掌握二次根式的混合运算法则是解题关键.5、B【分析】将一个图形绕某一点旋转180°后能与自身完全重合的图形是中心对称图形,根据定义依次判断即可得到答案.【详解】解:A、是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项正确;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误;故选:B.【点睛】此题考查中心对称图形的定义,熟记定义并掌握各图形的特点是解题的关键.6、C【分析】先根据正方形的性质和旋转的性质得到∠AOF的度数,OA=OF,再根据等腰三角形的性质即可求得∠OFA的度数【详解】∵正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,
∴∠AOF=90°+40°=130°,OA=OF,
∴∠OFA=(180°-130°)÷2=25°.
故选C.7、A【分析】根据轴对称图形概念进行解答即可.【详解】解:A、不是轴对称图形,符合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、是轴对称图形,不合题意;故选:A.【点睛】本题考查了轴对称图形的概念,判断轴对称图形的关键是寻找对称轴;轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.8、B【解析】试题分析:当x=0时y=6,x=1时y=6,x=﹣2时y=0,可得,解得,∴抛物线解析式为y=﹣x2+x+6=﹣(x﹣)2+,当x=0时y=6,∴抛物线与y轴的交点为(0,6),故①正确;抛物线的对称轴为x=,故②不正确;当x=3时,y=﹣9+3+6=0,∴抛物线过点(3,0),故③正确;∵抛物线开口向下,∴在对称轴左侧y随x的增大而增大,故④正确;综上可知正确的个数为3个,故选B.考点:二次函数的性质.9、D【分析】由作图知CM=CD=DN,再利用圆周角定理、圆心角定理逐一判断可得.【详解】解:由作图知CM=CD=DN,
∴∠COM=∠COD,故A选项正确;
∵OM=ON=MN,
∴△OMN是等边三角形,
∴∠MON=60°,
∵CM=CD=DN,∴∠MOA=∠AOB=∠BON=∠MON=20°,故B选项正确;∵∠MOA=∠AOB=∠BON,
∴∠OCD=∠OCM=,
∴∠MCD=,
又∠CMN=∠AON=∠COD,∴∠MCD+∠CMN=180°,
∴MN∥CD,故C选项正确;
∵MC+CD+DN>MN,且CM=CD=DN,
∴3CD>MN,故D选项错误;
故选D.【点睛】本题主要考查作图-复杂作图,解题的关键是掌握圆心角定理和圆周角定理等知识点.10、A【分析】根据阴影部分的面积=S扇形BDO﹣S弓形OD计算即可.【详解】由折叠可知,S弓形AD=S弓形OD,DA=DO.∵OA=OD,∴AD=OD=OA,∴△AOD为等边三角形,∴∠AOD=60°.∵∠AOB=120°,∴∠DOB=60°.∵AD=OD=OA=6,∴AC=CO=3,∴CD=3,∴S弓形AD=S扇形ADO﹣S△ADO6×36π﹣9,∴S弓形OD=6π﹣9,阴影部分的面积=S扇形BDO﹣S弓形OD(6π﹣9)=9.故选:A.【点睛】本题考查了扇形面积与等边三角形的性质,熟练运用扇形公式是解答本题的关键.11、C【解析】试题分析:抛物线的顶点坐标是(-3,-4).故选C.考点:二次函数的性质.12、D【解析】试题分析:根据所给出的图形和数字可得:主视图有3列,每列小正方形数目分别为3,2,3,则符合题意的是D;故选D.考点:1.由三视图判断几何体;2.作图-三视图.二、填空题(每题4分,共24分)13、【分析】由题中所给条件证明△ADF△ACG,可求出的值.【详解】解:在△ADF和△ACG中,AB=6,AC=5,D是边AB的中点AG是∠BAC的平分线,∴∠DAF=∠CAG∠ADE=∠C∴△ADF△ACG∴.故答案为.【点睛】本题考查了相似三角形的判定和性质,难度适中,需熟练掌握.14、【解析】根据题意列出图表,即可表示(a,b)所有可能出现的结果,根据一次函数的性质求出在图象上的点,即可得出答案.【详解】画树状图得:
∵共有6种等可能的结果(2,3),(2,4),(3,2),(3,4),(4,2),(4,3),在直线图象上的只有(3,2),
∴点(a,b)在图象上的概率为.【点睛】本题考查了用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意此题属于不放回实验.15、12πcm【分析】先根据底面半径求出底面周长,即为扇形的弧长,再设出扇形的半径,根据扇形的弧长公式,确定扇形的半径;最后用扇形的面积公式求解即可.【详解】解:∵底面圆的半径为2cm,∴底面周长为4πcm,∴侧面展开扇形的弧长为4πcm,设扇形的半径为r,∵圆锥的侧面展开图的圆心角是120°,∴=4π,解得:r=6,∴侧面积为×4π×6=12πcm,故答案为:12πcm.【点睛】本题考查了圆锥的表面积、扇形的面积以及弧长公式,解答的关键在于对基础知识的牢固掌握和灵活运用.16、1.【解析】试题分析:原式==9﹣1=1,故答案为1.考点:二次根式的混合运算.17、3﹣【分析】根据图形可以求得BF的长,然后根据图形即可求得S1﹣S2的值.【详解】解:∵在矩形ABCD中,AB=2,BC=,F是AB中点,∴BF=BG=1,∴S1=S矩形ABCD-S扇形ADE﹣S扇形BGF+S2,∴S1-S2=2×--=3-,故答案为:3﹣.【点睛】此题考查的是求不规则图形的面积,掌握矩形的性质和扇形的面积公式是解决此题的关键.18、【分析】根据反比例函数的图象在第二、第四象限得出,最后利用概率公式进行求解.【详解】∵反比例函数的图象在第二、第四象限,∴,∴该函数图象在第二、第四象限的概率是,故答案为:.【点睛】本题考查了反比例函数的图象,等可能情况下的概率计算公式,熟练掌握反比例函数图象的特征与概率公式是解题的关键.三、解答题(共78分)19、(1)-2;(2),【分析】(1)先计算特殊角的三角函数,然后计算负整数指数幂、零次幂、立方根,再合并同类项即可;(2)利用公式法解一元二次方程,即可得到答案.【详解】解:(1)原式===;(2)∵,∴,∴;∴,.【点睛】本题考查了特殊角的三角函数,实数的混合运算,以及解一元二次方程,解题的关键是熟练掌握运算法则进行计算.20、(1)详见解析;(1)详见解析;(3).【解析】(1)由题意可证OD∥AE,且EF⊥AE,可得EF⊥OD,即EF是⊙O的切线;(1)由同弧所对的圆周角相等,可得∠DAB=∠DGB,由余角的性质可得∠DGB=∠BDF;(3)由题意可得∠BOG=90°,根据勾股定理可求GH的长.【详解】解:(1)证明:连接OD,∵OA=OD,∴∠OAD=∠ODA又∵AD平分∠BAC,∴∠OAD=∠CAD∴∠ODA=∠CAD,∴OD∥AE,又∵EF⊥AE,∴OD⊥EF,∴EF是⊙O的切线(1)∵AB是⊙O的直径,∴∠ADB=90°∴∠DAB+∠OBD=90°由(1)得,EF是⊙O的切线,∴∠ODF=90°∴∠BDF+∠ODB=90°∵OD=OB,∴∠ODB=∠OBD∴∠DAB=∠BDF又∠DAB=∠DGB∴∠DGB=∠BDF(3)连接OG,∵G是半圆弧中点,∴∠BOG=90°在Rt△OGH中,OG=5,OH=OB﹣BH=5﹣3=1.∴GH==.【点睛】本题考查了切线的判定和性质,角平分线的性质,勾股定理,圆周角定理等知识,熟练运用切线的判定和性质解决问题是本题的关键.21、(1)y=x-1;(2)当y1>y2时,x<0和x>1.【分析】(1)根据抛物线的解析式求出A、B、C的解析式,把B、C的坐标代入直线的解析式,即可求出答案;(2)根据B、C点的坐标和图象得出即可.【详解】解:(1)抛物线y1=x2-2x-1,当x=0时,y=-1,当y=0时,x=1或-1,即A的坐标为(-1,0),B的坐标为(1,0),C的坐标为(0,-1),把B、C的坐标代入直线y2=kx+b得:,解得:k=1,b=-1,即直线BC的函数关系式是y=x-1;(2)∵B的坐标为(1,0),C的坐标为(0,-1),如图,∴当y1>y2时,x的取值范围是x<0或x>1.【点睛】本题考查了一次函数和二次函数图象上点的坐标特征、用待定系数法求一次函数的解析式和二次函数与一次函数的图象等知识点,能求出B、C的坐标是解此题的关键.22、(1),;(2)【分析】(1)根据待定系数法,分别把分别代入,进而得出解析式.(2)根据函数的交点性质,求出C、D的坐标,进而求出CD的长和三角形的高,进行求面积即可.【详解】解:(1)∵的图象过点,的图象过点,∴,∴,.(2)由(1)可知两条曲线与直线的交点为,∴,∴.【点睛】本题主要考察了反比例函数的性质,灵活运用待定系数法和函数的交点性质是解题的关键.23、见解析【解析】分析:(1)连接OD,由已知易得∠B=∠C,∠C=∠ODC,从而可得∠B=∠ODC,由此可得AB∥OD,结合DF⊥AB即可得到OD⊥DF,从而可得DF与⊙O相切;(2)连接AD,由已知易得BD=CD,∠BAD=∠CAD,由此可得DE=DC,从而可得DE=BD,结合DF⊥AB即可得到BF=EF.详解:(1)连结OD,∵AB=AC,∴∠B=∠C,∵OC=OD,∴∠ODC=∠C,∴∠ODC=∠B,∴OD∥AB,∵DF⊥AB,∴DF⊥OD,∴直线DF与⊙O相切;(2)连接AD.∵AC是⊙O的直径,∴AD⊥BC,又AB=AC,∴BD=DC,∠BAD=∠CAD,∴DE=DC,∴DE=DB,又DF⊥AB,∴BF=EF.点睛:(1)连接OD,结合已知条件证得OD∥AB是解答第1小题的关键;(2)连接AD结合已知条件和等腰三角形的性质证得DE=DC=BD是解答第2小题的关键.24、(1)(6﹣1x);(1)y=﹣40x1+140x+2;(3)预备资金4元购买材料一定够用,理由见解析【分析】(1)根据大正方形的边长减去两个小长方形的宽即可求解;
(1)根据总费用等于两种材料的费用之和即可求解;
(3)利用二次函数的性质和最值解答即可.【详解】解:(1)∵AH=GQ=x,AD=6,
∴MQ=6-1x;
故答案为:6-1x;(1)根据题意,得AH=x,AE=6﹣x,S甲=4S长方形AENH=4x(6﹣x)=14x﹣4x1,S乙=S正方形MNQP=(6﹣1x)1=36﹣14x+4x1.∴y=50(14x﹣4x1)+40(36﹣14x+4x1)=﹣40x1+140x+2.答:y关于x的函数解析式为y=﹣40x1+140x+2.(3)预备资金4元购买材料一定够用.理由如下:∵y=﹣40x1+140x+2=﹣40(x-3)1+1800,由﹣40<0,可知抛物线开口向下,在对称轴的左侧,y随x的增大而增大.由x-3=0可知,抛物线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度碎石供应与采购协议
- 2024年度教育培训合同标的课程设置与教学方式
- 2024年度火锅店股权转让协议
- 2024年度房屋租赁合同案例
- 04版股权转让合同(个人之间)
- 2024年度不锈钢栏杆生产与安装服务合同
- 2024年度D标签打印机定制购销合同
- 2024年度版权许可合同:音乐制品授权与网络传播
- 2024年度打桩工程环保技术应用合同
- 2024年度旅游包车预订与运营管理合同
- 【初中道法】爱护身体+课件-2024-2025学年统编版(2024)道德与法治七年级上
- 《品牌推广策划案N》课件
- 2024-2030年全球及中国睡眠无创呼吸机行业需求形势及应用前景预测报告
- 从业人员健康管理管理制度
- 2024年医疗器械经营质量管理规范培训课件
- 景区旅游安全风险评估报告
- GB/T 36187-2024冷冻鱼糜
- 22G101三维彩色立体图集
- 建筑施工安全生产治本攻坚三年行动方案(2024-2026年)
- DL-T 1476-2023 电力安全工器具预防性试验规程
- 国家开放大学《心理健康教育》形考任务1-9参考答案
评论
0/150
提交评论