版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年河北省保定市阜平县数学九年级第一学期期末质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列图形中不是中心对称图形的是()A. B. C. D.2.如图,四边形ABCD和四边形A'B'C'D'是以点O为位似中心的位似图形,若OA:OA'=3:5,则四边形ABCD和四边形A'B'C'D'的面积比为()A.3:5 B.3:8 C.9:25 D.:3.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为A.9 B.6 C.4 D.34.如图,等边的边长为是边上的中线,点是边上的中点.如果点是上的动点,那么的最小值为()A. B. C. D.5.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x个队参赛,根据题意,可列方程为()A. B.C. D.6.下列计算正确的是()A. B.C. D.7.观察下列等式:①②③④…请根据上述规律判断下列等式正确的是()A. B.C. D.8.下列图形中,不是轴对称图形的是()A. B. C. D.9.一元二次方程x2﹣3x﹣4=0的一次项系数是()A.1 B.﹣3 C.3 D.﹣410.如图钓鱼竿AC长6m,露在水面上的鱼线BC长3m,钓者想看看鱼钓上的情况,把鱼竿AC逆时针转动15°到AC′的位置,此时露在水面上的鱼线B'C'长度是()A.3m B.m C.m D.4m11.如图,在⊙O,点A、B、C在⊙O上,若∠OAB=54°,则∠C()A.54° B.27° C.36° D.46°12.若关于的一元二次方程的两个实数根是和3,那么对二次函数的图像和性质的描述错误的是()A.顶点坐标为(1,4) B.函数有最大值4 C.对称轴为直线 D.开口向上二、填空题(每题4分,共24分)13.双十一期间,荣昌重百推出有奖销售促销活动,消费达到800元以上得一次抽奖机会,李老师消费1000元后来到抽奖台,台上放着一个不透明抽奖箱,里面放有规格完全相同的四个小球,球上分别标有1,2,3,4四个数字,主持人让李老师连续不放回抽两次,每次抽取一个小球,如果两个球上的数字均为奇数则可中奖,则李老师中奖的概率是__________.14.在△ABC和△A'B'C'中,===,△ABC的周长是20cm,则△A'B'C的周长是_____.15.某校五个绿化小组一天的植树的棵数如下:9,10,12,x,1.已知这组数据的平均数是10,那么这组数据的方差是_____.16.如图,在中,弦,点在上移动,连结,过点作交于点,则的最大值为__________.17.如图,在中,,,若为斜边上的中线,则的度数为________.18.一个三角形的三边之比为,与它相似的三角形的周长为,则与它相似的三角形的最长边为____________.三、解答题(共78分)19.(8分)孝感商场计划在春节前50天里销售某品牌麻糖,其进价为18元/盒.设第天的销售价格为(元/盒),销售量为(盒).该商场根据以往的销售经验得出以下的销售规律:①当时,;当时,与满足一次函数关系,且当时,;时,.②与的关系为.(1)当时,与的关系式为;(2)为多少时,当天的销售利润(元)最大?最大利润为多少?20.(8分)如图,在中,点在边上,且,已知,.(1)求的度数;(2)我们把有一个内角等于的等腰三角形称为黄金三角形.它的腰长与底边长的比(或者底边长与腰长的比)等于黄金比.①写出图中所有的黄金三角形,选一个说明理由;②求的长.21.(8分)如图,在△ABC中,点O在边AC上,⊙O与△ABC的边BC,AB分别相切于C,D两点,与边AC交于E点,弦CF与AB平行,与DO的延长线交于M点.(1)求证:点M是CF的中点;(2)若E是的中点,BC=a,①求的弧长;②求的值.22.(10分)如图,在钝角中,点为上的一个动点,连接,将射线绕点逆时针旋转,交线段于点.已知∠C=30°,CA=2cm,BC=7cm,设B,P两点间的距离为xcm,A,D两点间的距离ycm.小牧根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究.下面是小牧探究的过程,请补充完整:(1)根据图形.可以判断此函数自变量X的取值范围是;(2)通过取点、画图、测量,得到了与的几组值,如下表:0.511.021.913.4734.164.473.973.222.421.66a2.022.50通过测量。可以得到a的值为;(3)在平而直角坐标系xOy中.描出上表中以各对对应值为坐标的点,画出该函数的图象;(4)结合画出的函数图象,解决问题:当AD=3.5cm时,BP的长度约为cm.23.(10分)如图,图中每个小方格都是边长为1个单位长度的正方形,在方格纸中的位置如图所示.(1)请在图中建立平面直角坐标系,使得,两点的坐标分别为,,并写出点的坐标;(2)在图中作出绕坐标原点旋转后的,并写出,,的坐标.24.(10分)如图,抛物线y=-x2+bx+c与x轴交于A、B两点,且B点的坐标为(3,0),经过A点的直线交抛物线于点D(2,3).(1)求抛物线的解析式和直线AD的解析式;(2)过x轴上的点E(a,0)作直线EF∥AD,交抛物线于点F,是否存在实数a,使得以A、D、E、F为顶点的四边形是平行四边形?如果存在,求出满足条件的a;如果不存在,请说明理由.25.(12分)如图,海中有两个小岛,,某渔船在海中的处测得小岛D位于东北方向上,且相距,该渔船自西向东航行一段时间到达点处,此时测得小岛恰好在点的正北方向上,且相距,又测得点与小岛相距.(1)求的值;(2)求小岛,之间的距离(计算过程中的数据不取近似值).26.如图1,AD、BD分别是△ABC的内角∠BAC、∠ABC的平分线,过点A作AE⊥AD,交BD的延长线于点E.(1)求证:∠E=∠C;(2)如图2,如果AE=AB,且BD:DE=2:3,求cos∠ABC的值;(3)如果∠ABC是锐角,且△ABC与△ADE相似,求∠ABC的度数.
参考答案一、选择题(每题4分,共48分)1、B【分析】在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.【详解】A、C、D都是中心对称图形;不是中心对称图形的只有B.故选B.【点睛】本题属于基础应用题,只需学生熟知中心对称图形的定义,即可完成.2、C【分析】根据题意求出两个相似多边形的相似比,根据相似多边形的性质解答.【详解】∵四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,OA:OA′=3:5,∴DA:D′A′=OA:OA′=3:5,∴四边形ABCD与四边形A′B′C′D′的面积比为:9:1.故选:C.【点睛】本题考查位似的性质,根据位似图形的面积比等于位似比的平方可得,位似图形即特殊的相似图形,运用相似图形的性质是解题的关键.3、D【分析】已知ab=8可求出四个三角形的面积,用大正方形面积减去四个三角形的面积得到小正方形的面积,根据面积利用算术平方根求小正方形的边长.【详解】故选D.【点睛】本题考查勾股定理的推导,有较多变形题,解题的关键是找出图形间面积关系,同时熟练运用勾股定理以及完全平方公式,本题属于基础题型.4、D【分析】要求EP+CP的最小值,需考虑通过作辅助线转化EP,CP的值,从而找出其最小值求解【详解】连接BE,与AD交于点G.∵△ABC是等边三角形,AD是BC边上的中线,∴AD⊥BC,∴AD是BC的垂直平分线,∴点C关于AD的对称点为点B,∴BE就是EP+CP的最小值.∴G点就是所求点,即点G与点P重合,∵等边△ABC的边长为8,E为AC的中点,∴CE=4,BE⊥AC,在直角△BEC中,BE=,∴EP+CP的最小值为,故选D.【点睛】此题考查轴对称-最短路线问题,等边三角形的对称性、三线合一的性质以及勾股定理的运用,熟练掌握,即可解题.5、A【分析】共有x个队参加比赛,则每队参加(x-1)场比赛,但2队之间只有1场比赛,根据共安排36场比赛,列方程即可.【详解】解:设有x个队参赛,根据题意,可列方程为:x(x﹣1)=36,故选A.【点睛】此题考查由实际问题抽象出一元二次方程,解题关键在于得到比赛总场数的等量关系.6、C【分析】分别根据合并同类项的法则、完全平方公式、幂的乘方以及同底数幂的乘法化简即可判断.【详解】A、,故选项A不合题意;B.,故选项B不合题意;C.,故选项C符合题意;D.,故选项D不合题意,故选C.【点睛】本题考查了合并同类项、幂的运算以及完全平方公式,熟练掌握各运算的运算法则是解答本题的关键.7、C【分析】根据题目中各个式子的变化规律,可以判断各个选项中的等式是否成立,从而可以解答本题.【详解】解:由题意可得,,选项A错误;,选项B错误;,选项C正确;,选项D错误.故选:C.【点睛】本题考查的知识点是探寻数式的规律,从题目中找出式子的变化规律是解此题的关键.8、A【分析】根据轴对称图形概念进行解答即可.【详解】解:A、不是轴对称图形,符合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、是轴对称图形,不合题意;故选:A.【点睛】本题考查了轴对称图形的概念,判断轴对称图形的关键是寻找对称轴;轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.9、B【解析】根据一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),在一般形式中bx叫一次项,系数是b,可直接得到答案.【详解】解:一次项是:未知数次数是1的项,故一次项是﹣3x,系数是:﹣3,故选:B.【点睛】此题考查的是求一元一次方程一般式中一次项系数,掌握一元一次方程的一般形式和一次项系数的定义是解决此题的关键.10、B【解析】因为三角形ABC和三角形AB′C′均为直角三角形,且BC、B′C′都是我们所要求角的对边,所以根据正弦来解题,求出∠CAB,进而得出∠C′AB′的度数,然后可以求出鱼线B'C'长度.【详解】解:∵sin∠CAB=∴∠CAB=45°.∵∠C′AC=15°,∴∠C′AB′=60°.∴sin60°=,解得:B′C′=3.故选:B.【点睛】此题主要考查了解直角三角形的应用,解本题的关键是把实际问题转化为数学问题.11、C【分析】先利用等腰三角形的性质和三角形内角和计算出∠AOB的度数,然后利用圆周角解答即可.【详解】解:∵OA=OB,∴∠OBA=∠OAB=54°,∴∠AOB=180°﹣54°﹣54°=72°,∴∠ACB=∠AOB=36°.故答案为C.【点睛】本题考查了三角形内角和和圆周角定理,其中发现并正确利用圆周角定理是解题的关键.12、D【分析】由题意根据根与系数的关系得到a<0,根据二次函数的性质即可得到二次函数y=a(x-1)2+1的开口向下,对称轴为直线x=1,顶点坐标为(1,1),当x=1时,函数有最大值1.【详解】解:∵关于x的一元二次方程的两个实数根是-1和3,∴-a=-1+3=2,∴a=-2<0,∴二次函数的开口向下,对称轴为直线x=1,顶点坐标为(1,1),当x=1时,函数有最大值1,故A、B、C叙述正确,D错误,故选:D.【点睛】本题考查二次函数的性质,根据一元二次方程根与系数的关系以及根据二次函数的性质进行分析是解题的关键.二、填空题(每题4分,共24分)13、【分析】画树状图展示所有12种等可能的结果数,找出两个球上的数字均为奇数的结果数,然后根据概率公式求解.【详解】画树状图为:共有12种等可能的结果数,其中两个球上的数字均为奇数的结果数为2,所以李老师中奖的概率=.故答案为:.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.14、30cm.【分析】利用相似三角形的性质解决问题即可.【详解】,的周长:的周长=2:3的周长为20cm,的周长为30cm,故答案为:30cm.【点睛】本题主要考查相似三角形的判定及性质,掌握相似三角形的判定及性质是解题的关键.15、2【分析】首先根据平均数确定x的值,再利用方差公式S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],计算方差即可.【详解】∵组数据的平均数是10,∴(9+10+12+x+1)=10,解得:x=11,∴S2=[[(9﹣10)2+(10﹣10)2+(12﹣10)2+(11﹣10)2+(1﹣10)2],=×(1+0+4+1+4),=2.故答案为:2.【点睛】本题考查了方差,一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.16、2【分析】连接OD,根据勾股定理求出CD,利用垂线段最短得到当OC⊥AB时,OC最小,根据垂径定理计算即可;【详解】如图,连接OD,∵CD⊥OC,∴∠DCO=,∴,当OC的值最小时,CD的值最大,OC⊥AB时,OC最小,此时D、B两点重合,∴CD=CB=AB=2,即CD的最大值为2;故答案为:2.【点睛】本题主要考查了勾股定理,垂径定理,掌握勾股定理,垂径定理是解题的关键.17、【分析】先根据直角三角形的性质得出AD=CD,进而根据等边对等角得出,再根据即得.【详解】∵为斜边上的中线∴AD=CD∴∵∴故答案为:.【点睛】本题考查直角三角形的性质及等腰三角形的性质,解题关键是熟知直角三角形斜边上的中线等于斜边的一半.18、18cm.【分析】由一个三角形的三边之比为3:6:4,可得与它相似的三角形的三边之比为3:6:4,又由与它相似的三角形的周长为39cm,即可求得答案.【详解】解:∵一个三角形的三边之比为3:6:4,∴与它相似的三角形的三边之比为3:6:4,∵与它相似的三角形的周长为39cm,∴与它相似的三角形的最长边为:39×=18(cm).
故答案为:18cm.【点睛】此题考查了相似三角形的性质.此题比较简单,注意相似三角形的对应边成比例.三、解答题(共78分)19、(1);(2)32,2646元.【分析】(1)设一次函数关系式为,将“当时,;时,”代入计算即可;(2)根据利润等于单件利润乘以销售量分段列出函数关系式,再根据一次函数及二次函数的性质得出最大利润即可.【详解】解:(1)设一次函数关系式为∵当时,;时,,即,解得:∴(2)∴当时,∵60>0∴当x=30时,W最大=2400(元)当时∴当x=32时,当天的销售利润W最大,为2646元.2646>2400∴故当x=32时,当天的销售利润W最大,为2646元.【点睛】本题考查了二次函数的实际应用,根据题意列出函数关系式并熟知函数的基本性质是解题关键.20、(1);(2)①有三个:,理由见解析;②.【分析】(1)设,根据题意得到,由三角形的外角性质,即可求出x的值,从而得到答案;(2)①根据黄金三角形的定义,即可得到答案;②由①可知,是黄金三角形,则根据比例关系,求出,然后求出AD的长度.【详解】解:(1),则,设,则,又,,,解得:,;(2)①有三个:是黄金三角形;或,是黄金三角形;或,,又,,,是黄金三角形;②∵是黄金三角形,,,,,.【点睛】本题考查了等腰三角形的性质以及黄金三角形的定义,三角形的内角和定理以及三角形的外角性质,解题的关键是熟练掌握等腰三角形的性质,三角形的外角性质.21、(1)见解析;(2)①πa;②=1.【分析】(1)由切线的性质可得∠ACB=∠ODB=90°,由平行线的性质可得OM⊥CF,由垂径定理可得结论;(2)①由题意可证△BCD是等边三角形,可得∠B=60°,由直角三角形的性质可得AB=2a,AC=a,AD=a,通过证明△ADO∽△ACB,可得,可求DO的长,由弧长公式可求解;②由直角三角形的性质可求AO=a,可得AE的长,即可求解.【详解】证明:(1)∵⊙O与△ABC的边BC,AB分别相切于C,D两点,∴∠ACB=∠ODB=90°,∵CF∥AB,∴∠OMF=∠ODB=90°,∴OM⊥CF,且OM过圆心O,∴点M是CF的中点;(2)①连接CD,DF,OF,∵⊙O与△ABC的边BC,AB分别相切于C,D两点,∴BD=BC,∵E是的中点,∴,∴∠DCE=∠FCE,∵AB∥CF,∴∠A=∠ECF=∠ACD,∴AD=CD,∵∠A+∠B=90°,∠ACD+∠BCD=90°,∴∠B=∠BCD,∴BD=CD,且BD=BC,∴BD=BC=CD,∴△BCD是等边三角形,∴∠B=60°,∴∠A=30°=∠ECF=∠ACD,∴∠DCF=60°,∴∠DOF=120°,∵BC=a,∠A=30°,∴AB=2a,AC=a,∴AD=a,∵∠A=∠A,∠ADO=∠ACB=90°,∴△ADO∽△ACB,∴,∴∴DO=a,∴的弧长==πa;②∵∠A=30°,OD⊥AB,∴AO=2DO=a,∴AE=AO﹣OE=﹣a=a,∴=1.【点睛】本题是相似形综合题,考查了圆的有关性质,等边三角形的判定和性质,直角三角形的性质,相似三角形的判定和性质,弧长公式,灵活运用这些性质进行推理证明是本题的关键.22、(1)0≤x≤5;(2)1.74;(3)见解析;(4)0.8或者4.8.【分析】(1)考虑点P的临界位置∠APB=60°时,D与B重合,计算出此时的PB长,即可知x的取值范围;(2)根据图形测量即可;(3)描点连线即可;(4)画直线y=3.5与图象的交点即可观察出x的值.【详解】(1)如图1,当∠APB=60°时,D与B重合,作PE⊥AC于E,∵∠C=30°,∠APB=60°,∴∠CAP=30°,∴PC=AP,∴CE=AE=,∴PC=2,∴PB=5,∴0≤x≤5;(2)测量得a=1.74;(3)如下图所示,(4观察图象可知,当y=3.5时x=0.8或者4.8.【点睛】本题考查了旋转的性质、等腰三角形的性质以及描点法画函数图象,利用图象求近似值,体现了特殊到一般,再由一般到特殊的思想方法.23、(1)图形见解析,点坐标;(2)作图见解析,,,的坐标分别是【分析】(1)根据已知点的坐标,画出坐标系,由坐标系确定C点坐标;(2)由关于原点中心对称性画,可确定写出,,的坐标.【详解】解:(1),把向左平移两个单位长度,再向上平移一个单位长度,得到原点O,建立如下图的直角坐标系,C(3,-3);(2)分别找到的对称点,,,顺次连接,,,即为所求,如图所示,(-2,1),(-1,4),(-3,3).【点睛】本题考查了作图-旋转变换,熟练掌握网格结构,准确找出对应点的位置是解题的关键.24、(1)y=-x2+2x+3;y=x+1;(2)a的值为-3或.【分析】(1)把点B和D的坐标代入抛物线y=-x2+bx+c得出方程组,解方程组即可;由抛物线解析式求出点A的坐标,设直线AD的解析式为y=kx+a,把A和D的坐标代入得出方程组,解方程组即可;(2)分两种情况:①当a<-1时,DF∥AE且DF=AE,得出F(0,3),由AE=-1-a=2,求出a的值;②当a>-1时,显然F应在x轴下方,EF∥AD且EF=AD,设F(a-3,-3),代入抛物线解析式,即可得出结果.【详解】解:(1)把点B和D的坐标代入抛物线y=-x2+bx+c得:解得:b=2,c=3,∴抛物线的解析式为y=-x2+2x+3;当y=0时,-x2+2x+3=0,解得:x=3,或x=-1,∵B(3,0),∴A(-1,0);设直线AD的解析式为y=kx+a,把A和D的坐标代入得:解得:k=1,a=1,∴直线AD的解析式为y=x+1;(2)分两种情况:①当a<-1时,DF∥AE且DF=AE,则F点即为(0,3),∵AE=-1-a=2,∴a=-3;②当a>-1时,显然F应在x轴下方,EF∥AD且EF=AD,设F(a-3,-3),由-(a-3)2+2(a-3)+3=-3,解得:a=;综上所述,满足条件的a的值为-3或.【点睛】本题考查抛物线与x轴的交点;二次函数的性质;待定系数法求二次函数解析式及平行四边形的判定,综合性较强.25、(1);(2)小岛、相距.【解析】(1)如图,过点作,垂足为,在中,先求出DE长,然后在在中,根据正弦的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 服装门市出租合同模板
- 2024无纺布供应与经销标准协议格式
- 2024年度教育培训费用协议范例版
- 虎门有机蔬菜配送合同模板
- 2024年软件系统维护服务协议范本一
- 高价加湿器采购合同模板
- 2024年水净化处理业务合作合同
- 数字营销学 3第三章 营销数据及数据采集-试题及答案
- 车辆装卸服务合同模板
- 2024年度专业体育健身教练劳务分包合同版
- 2023年中国建设银行建银工程咨询有限责任公司招聘考试真题及答案
- 形势与政策24秋-专题测验1-5-国开-参考资料
- 跨学科实践活动1 微型空气质量“检测站”的组装与使用课件-2024-2025学年九年级化学人教版(2024)上册
- 贵州省遵义市2023-2024学年七年级上学期期中语文试题
- 2024年宗教知识竞赛测试题库及答案(共100题)
- 北京2024年第一次高中学业水平合格考化学试卷真题(含答案详解)
- 教育发展未来展望
- GB/T 44146-2024基于InSAR技术的地壳形变监测规范
- 2024年湖南省中考英语试题卷(含答案)
- 卡通版名人介绍竺可桢的故事
- 2024年《公务员法》相关法律法规知识考试题库实验班
评论
0/150
提交评论