




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年广东省东莞市中学堂星晨学校数学九年级第一学期期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是()A.k> B.k≥ C.k>且k≠1 D.k≥且k≠12.一元二次方程有实数解的条件()A. B. C. D.3.如图,直线l与x轴,y轴分别交于A,B两点,且与反比例函数y=(x>0)的图象交于点C,若S△AOB=S△BOC=1,则k=()A.1 B.2 C.3 D.44.如图所示,中,,,点为中点,将绕点旋转,为中点,则线段的最小值为()A. B. C. D.5.边长为2的正六边形的面积为()A.6 B.6 C.6 D.6.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是()A.15π B.20π C.24π D.30π7.如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC=()A.1:3 B.1:4 C.2:3 D.1:28.设,,是抛物线上的三点,则的大小关系为()A. B. C. D.9.如图,点A、B、C在⊙O上,∠A=50°,则∠BOC的度数为()A.130° B.50° C.65° D.100°10.如图所示,几何体的左视图为()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,△ABC内接于⊙O,若∠A=α,则∠OBC=_____.12.如图,是某同学制作的一个圆锥形纸帽的示意图,则围成这个纸帽的纸的面积为______.13.如图,△ABC中,DE∥FG∥BC,AD∶DF∶FB=2∶3∶4,若EG=4,则AC=________.14.直线y=k1x+b与双曲线y=交于A、B两点,其横坐标分别为1和5,则不等式k1x+b<的解集是_______.15.如图,在平面直角坐标系中,边长为6的正六边形ABCDEF的对称中心与原点O重合,点A在x轴上,点B在反比例函数位于第一象限的图象上,则k的值为.16.将量角器按如图所示的方式放置在三角形纸板上,使点在半圆上,点、的度数分别为、,则的大小为___________17.如图,中,,,,将绕顶点逆时针旋转到处,此时线段与的交点恰好为的中点,则的面积为______.18.如图,将一个顶角为30°角的等腰△ABC绕点A顺时针旋转一个角度α(0<α<180°)得到△AB'C′,使得点B′、A、C在同一条直线上,则α等于_____°.三、解答题(共66分)19.(10分)如图,点是正方形边.上一点,连接,作于点,于点,连接.(1)求证:;(2)己知,四边形的面积为,求的值.20.(6分)如图,已知是的外接圆,圆心在的外部,,,求的半径.21.(6分)如图,抛物线的图象经过点,顶点的纵坐标为,与轴交于两点.(1)求抛物线的解析式.(2)连接为线段上一点,当时,求点的坐标.22.(8分)如图,在中,,,以为原点所在直线为轴建立平面直角坐标系,的顶点在反比例函数的图象上.(1)求反比例函数的解析式:(2)将向右平移个单位长度,对应得到,当函数的图象经过一边的中点时,求的值.23.(8分)如图,某小区规划在一个长,宽的矩形场地上,修建两横两竖四条同样宽的道路,且横、竖道路分别与矩形的长、宽平行,其余部分种草坪,若使每块草坪的面积都为.应如何设计道路的宽度?24.(8分)如图,直线y=x﹣3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=﹣x2+mx+n与x轴的另一个交点为A,顶点为P.(1)求3m+n的值;(2)在该抛物线的对称轴上是否存在点Q,使以C,P,Q为顶点的三角形为等腰三角形?若存在,求出有符合条件的点Q的坐标;若不存在,请说明理由.(3)将该抛物线在x轴上方的部分沿x轴向下翻折,图象的其余部分保持不变,翻折后的图象与原图象x轴下方的部分组成一个“M“形状的新图象,若直线y=x+b与该“M”形状的图象部分恰好有三个公共点,求b的值.25.(10分)抛物线的图像与轴的一个交点为,另一交点为,与轴交于点,对称轴是直线.(1)求该二次函数的表达式及顶点坐标;(2)画出此二次函数的大致图象;利用图象回答:当取何值时,?(3)若点在抛物线的图像上,且点到轴距离小于3,则的取值范围为;26.(10分)解方程:5x(x+1)=2(x+1)
参考答案一、选择题(每小题3分,共30分)1、C【详解】根据题意得k-1≠0且△=2²-4(k-1)×(-2)>0,解得:k>且k≠1.故选C【点睛】本题考查了一元二次方程ax²+bx+c=0(a≠0)的根的判别式△=b²-4ac,关键是熟练掌握:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.2、B【分析】根据一元二次方程的根的判别式即可得.【详解】一元二次方程有实数解则,即解得故选:B.【点睛】本题考查了一元二次方程的根的判别式,熟记根的判别式是解题关键.对于一般形式有:(1)当时,方程有两个不相等的实数根;(2)当时,方程有两个相等的实数根;(3)当时,方程没有实数根.3、D【分析】作CD⊥x轴于D,设OB=a(a>0).由S△AOB=S△BOC,根据三角形的面积公式得出AB=BC.根据相似三角形性质即可表示出点C的坐标,把点C坐标代入反比例函数即可求得k.【详解】如图,作CD⊥x轴于D,设OB=a(a>0).∵S△AOB=S△BOC,∴AB=BC.∵△AOB的面积为1,∴OA•OB=1,∴OA=,∵CD∥OB,AB=BC,∴OD=OA=,CD=2OB=2a,∴C(,2a),∵反比例函数y=(x>0)的图象经过点C,∴k=×2a=1.故选D.【点睛】此题考查反比例函数与一次函数的交点问题,待定系数法求函数解析式,会运用相似求线段长度是解题的关键.4、B【分析】如图,连接CN.想办法求出CN,CM,根据MN≥CN−CM即可解决问题.【详解】如图,连接CN.在Rt△ABC中,∵AC=4,∠B=30°,∴AB=2AC=2,BC=AC=3,∵CM=MB=BC=,∵A1N=NB1,∴CN=A1B1=,∵MN≥CN−CM,∴MN≥,即MN≥,∴MN的最小值为,故选:B.【点睛】本题考查解直角三角形,旋转变换等知识,解题的关键是用转化的思想思考问题,属于中考常考题型.5、A【解析】首先根据题意作出图形,然后可得△OBC是等边三角形,然后由三角函数的性质,求得OH的长,继而求得正六边形的面积.【详解】解:如图,连接OB,OC,过点O作OH⊥BC于H,∵六边形ABCDEF是正六边形,∴∠BOC=×360°=60°,∵OB=0C,∴△OBC是等边三角形,∴BC=OB=OC=2,∴它的半径为2,边长为2;∵在Rt△OBH中,OH=OB•sin60°=2×,∴边心距是:;∴S正六边形ABCDEF=6S△OBC=6××2×=6.故选:A.【点睛】本题考查圆的内接正六边形的性质、正多边形的内角和、等边三角形的判定与性质以及三角函数等知识.此题难度不大,注意掌握数形结合思想的应用.6、A【解析】试题分析:∵圆锥的主视图是腰长为5,底边长为6的等腰三角形,∴这个圆锥的底面圆的半径为3,母线长为5.∴这个圆锥的侧面积=.故选A.考点:1.简单几何体的三视图;2.圆锥的计算.7、D【解析】解:在平行四边形ABCD中,AB∥DC,则△DFE∽△BAE,∴DF:AB=DE:EB.∵O为对角线的交点,∴DO=BO.又∵E为OD的中点,∴DE=DB,则DE:EB=1:1,∴DF:AB=1:1.∵DC=AB,∴DF:DC=1:1,∴DF:FC=1:2.故选D.8、D【分析】根据二次函数的性质得到抛物线的开口向上,对称轴为直线x=-2,然后根据三个点离对称轴的远近判断函数值的大小.【详解】,∵a=1>0,∴抛物线开口向上,对称轴为直线x=-2,∵离直线x=-2的距离最远,离直线x=-2的距离最近,∴.故选:D.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.9、D【解析】根据圆周角定理求解即可.【详解】解:∵∠A=50°,∴∠BOC=2∠A=100°.故选D.【点睛】考查了圆周角定理的运用.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10、A【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:从左边看第一层一个小正方形,第二层一个小正方形,第三层一个小正方形故选:A.【点睛】本题考查简单组合体的三视图,难度不大.二、填空题(每小题3分,共24分)11、90°﹣α.【分析】首先连接OC,由圆周角定理,可求得∠BOC的度数,又由等腰三角形的性质,即可求得∠OBC的度数.【详解】连接OC.∵∠BOC=2∠BAC,∠BAC=α,∴∠BOC=2α.∵OB=OC,∴∠OBC故答案为:.【点睛】此题考查了圆周角定理与等腰三角形的性质.此题比较简单,注意掌握辅助线的作法,注意数形结合思想的应用.12、【分析】根据已知得出圆锥的底面半径为10cm,圆锥的侧面积=π×底面半径×母线长,即可得出答案.【详解】解:底面圆的半径为10,则底面周长=10π,
侧面面积=×10π×30=300πcm1.
故答案为:300πcm1.【点睛】本题主要考查了圆锥的侧面积公式,掌握圆锥侧面积公式是解决问题的关键,此问题是中考中考查重点.13、12【解析】试题解析:根据平行线分线段成比例定理可得:故答案为14、0<x<1或x>1.【分析】根据函数图象,可得一次函数图象在上方的部分,可得答案【详解】解:∵直线y=k1x+b与双曲线y=交于A、B两点,其横坐标分别为1和1,
∴不等式k1x+b<的解集是0<x<1或x>1.故答案为:0<x<1或x>1.【点睛】本题考查了反比例函数与一次函数的交点问题,一次函数图象在下方的部分是不等式的解集.15、【解析】试题分析:连接OB,过B作BM⊥OA于M,∵六边形ABCDEF是正六边形,∴∠AOB=10°.∵OA=OB,∴△AOB是等边三角形.∴OA=OB=AB=1.∴BM=OB•sin∠BOA=1×sin10°=,OM=OB•COS10°=2.∴B的坐标是(2,).∵B在反比例函数位于第一象限的图象上,∴k=2×=.16、【分析】设半圆圆心为O,连OA,OB,则∠AOB=86°−30°=56°,根据圆周角定理得∠ACB=∠AOB,即可得到∠ACB的大小.【详解】设半圆圆心为O,连OA,OB,如图,∵∠ACB=∠AOB,而∠AOB=86°−30°=56°,∴∠ACB=×56°=28°.故答案为:28°.【点睛】本题考查了圆周角定理.在同圆或等圆中,同弧和等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.17、【分析】A1B1与OA相交于点E,作B1H⊥OB于点H,如图,利用勾股定理得到AB=1,再根据直角三角形斜边上的中线性质得OD=AD=DB,则∠1=∠A,接着根据旋转的性质得∠3=∠2,A1B1=AB=1,OB1=OB=8,OA1=OA=2,易得∠2+∠1=90°,所以∠OEB1=90°,于是可利用面积法计算出OE,再由四边形OEB1H为矩形得到B1H=OE,根据三角形的面积公式即可得出结论.【详解】A1B1与OA相交于点E,作B1H⊥OB于点H,如图,∵∠AOB=90°,AO=2,BO=8,∴AB1.∵D为AB的中点,∴OD=AD=DB,∴∠1=∠A.∵△AOB绕顶点O逆时针旋转得到△A1OB1,∴∠3=∠2,A1B1=AB=1,OB1=OB=8,OA1=OA=2.∵∠3+∠A=90°,∴∠2+∠1=90°,∴∠OEB1=90°.∵OE•A1B1OB1•OA1,∴OE.∵∠B1EO=∠EOB=∠OHB1=90°,∴四边形OEB1H为矩形,∴B1H=OE,∴的面积===.故答案为:.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了全等三角形的判定与性质和矩形的判定与性质.18、1°【分析】由等腰三角形的性质可求∠BAC=∠BCA=75°,由旋转的性质可求解.【详解】解:∵∠B=30°,BC=AB,∴∠BAC=∠BCA=75°,∴∠BAB'=1°,∵将一个顶角为30°角的等腰△ABC绕点A顺时针旋转一个角度α(0<α<180°)得到△AB'C′,∴∠BAB'=α=1°,故答案为:1.【点睛】本题考查了旋转的性质,等腰三角形的性质,灵活运用旋转的性质是本题的关键.三、解答题(共66分)19、(1)见解析;(2)【分析】(1)首先由正方形的性质得出BA=AD,∠BAD=90°,又由DE⊥AM于点E,BF⊥AM得出∠AFB=90°,∠DEA=90°,∠ABF=∠EAD,然后即可判定△ABF≌△DAE,即可得出BF=AE;(2)首先设AE=x,则BF=x,DE=AF=2,然后将四边形的面积转化为两个三角形的面积之和,列出方程,得出BF,然后利用勾股定理得出BE,即可得解.【详解】(1)证明:∵四边形ABCD为正方形,∴BA=AD,∠BAD=90°,∵DE⊥AM于点E,BF⊥AM于点F,∴∠AFB=90°,∠DEA=90°,∵∠ABF+∠BAF=90°,∠EAD+∠BAF=90°,∴∠ABF=∠EAD,在△ABF和△DEA中,∴△ABF≌△DAE(AAS),∴BF=AE;(2)设AE=x,则BF=x,DE=AF=2,∵四边形ABED的面积为24,∴•x•x+•x•2=24,解得x1=6,x2=﹣8(舍去),∴EF=x﹣2=4,在Rt△BEF中,BE==2,∴=.【点睛】此题主要考查正方形的性质以及三角形全等的判定与性质、勾股定理的运用,熟练掌握,即可解题.20、4【解析】已知△ABC是等腰三角形,根据等腰三角形的性质,作于点,则直线为的中垂线,直线过点,在Rt△OBH中,用半径表示出OH的长,即可用勾股定理求得半径的长.【详解】作于点,则直线为的中垂线,直线过点,,,,即,.【点睛】考查垂径定理以及勾股定理,掌握垂径定理是解题的关键.21、(1)或;(2)【分析】(1)将点C、D的坐标代入抛物线表达式,即可求解;(2)当△AOC∽△AEB时,===,求出yE=,即可求出点E坐标.【详解】解:(1)由题可列方程组:,解得:,∴抛物线解析式为:或;(2)由题,∠AOC=90°,AC=,AB=4,设直线AC的解析式为:y=kx+b,则,解得,∴直线AC的解析式为:y=-2x-2,
当△AOC∽△AEB时,===,∵S△AOC=1,∴S△AEB=,∴AB×|yE|=,AB=4,则yE=,则点E(,).【点睛】本题考查的是二次函数综合运用,涉及到一次函数、点的对称性、三角形相似、图形的面积计算等.22、(1);(2)值有或【分析】(1)过点作于点,根据,可求出△AOB的面积8,由等腰三角形的三线合一可知△AOD的面积为4,根据反比例函数k的几何意义几何求出k;
(2)分两种情况讨论:①当边的中点在的图象上,由条件可知,即可得到C点坐标为,从而可求得m;②当边的中点在的图象上,过点作于点,由条件可知,,因此中点,从而可求得m.【详解】解:(1)过点作于点,如图1∵,∴,∴,,即(2)①当边的中点在的图象上,如图2∵,∴,,点,即∴②当边的中点在的图象上,过点作于点,如图3∵,,∴中点即∴综上所述,符合条件的值有或【点睛】本题考查了用待定系数法求反比例函数的解析式,掌握直角三角形、等边三角形的性质以及分类讨论思想是解题的关键.23、道路的宽度应设计为1m.【分析】设道路的宽度为m,横、竖道路分别有2条,所以草坪的宽为:(20-2x)m,长为:(30-2x)m,草坪的总面积为56×9,根据长方形的面积公式即可得出结果.【详解】解:设道路的宽度为m.由题意得:化简得:解得:,(舍)答:道路的宽度应设计为1m.【点睛】本题考查的是一元二次方程的实际应用,根据题目条件进行设未知数,列出方程并且求解是解题的关键.24、(1)9;(2)点Q的坐标为(2,1﹣2)或(2,1+2)或(2,﹣)或(2,﹣7);(3)b=﹣3或﹣.【分析】(1)求出B、C的坐标,将点B、C的坐标分别代入抛物线表达式,即可求解;(2)分CP=PQ、CP=CQ、CQ=PQ,分别求解即可;(3)分两种情况,分别求解即可.【详解】解:(1)直线y=x﹣3,令y=0,则x=3,令x=0,则y=﹣3,故点B、C的坐标分别为(3,0)、(0,﹣3),将点B、C的坐标分别代入抛物线表达式得:,解得:,则抛物线的表达式为:y=﹣x2+4x﹣3,则点A坐标为(1,0),顶点P的坐标为(2,1),3m+n=12﹣3=9;(2)①当CP=CQ时,C点纵坐标为PQ中点的纵坐标相同为﹣3,故此时Q点坐标为(2,﹣7);②当CP=PQ时,∵PC=,∴点Q的坐标为(2,1﹣)或(2,1+);③当CQ=PQ时,过该中点与CP垂直的直线方程为:y=﹣x﹣,当x=2时,y=﹣,即点Q的坐标为(2,﹣);故:点Q的坐标为(2,1﹣2)或(2,1+2)或(2,﹣)或(2,﹣7);(3)图象
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 南通智能装备制造基地建设合作合同
- 报警器安装施工合同
- 个人居间合同
- 借款合同抵押与担保
- 民间借贷抵押合同年
- 冬季水果供应链管理服务合同
- 森林资源培育与利用合作合同
- 沈阳科技学院《推销理论与实务》2023-2024学年第二学期期末试卷
- 广州城市理工学院《科研实训》2023-2024学年第二学期期末试卷
- 双手向后抛实心球的练习 教学设计-2023-2024学年高一上学期体育与健康人教版必修第一册
- 2024天津高考英语试题及答案
- 国家电网招聘之财务会计类题库及完整答案(各地真题)
- 2024版中山二手住宅交易合同指南2篇
- 五年级下册数学课内每日计算小纸条
- 2024年度中国宠物行业研究报告
- 工业自动化控制系统升级与维护服务合同
- 定岗定编定员实施方案(5篇)
- 药品经营质量管理规范
- 爆破工程师培训
- 2024年云南省公务员考试《行测》真题及答案解析
- 教科版初中物理八年级下册知识梳理
评论
0/150
提交评论