




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年湖北省阳新县九年级数学第一学期期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知⊙O的半径为6cm,OP=8cm,则点P和⊙O的位置关系是()A.点P在圆内 B.点P在圆上 C.点P在圆外 D.无法判断2.电影《流浪地球》一上映就获得追捧,第一天票房收入约8亿元,第三天票房收入达到了11.52亿元,设第一天到第三天票房收入平均每天增长的百分率为x,则可列方程()A.8(1+x)=11.52 B.8(1+2x)=11.52C.8(1+x)=11.52 D.8(1﹣x)=11.523.如图,AB是⊙O的直径,弦CD⊥AB于点M,若CD=8cm,MB=2cm,则直径AB的长为()A.9cm B.10cm C.11cm D.12cm4.下列说法正确的是()A.袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机抽出一个球,一定是红球B.天气预报“明天降水概率10%”,是指明天有10%的时间会下雨C.某地发行一种福利彩票,中奖率是千分之一,那么,买这种彩票1000张,一定会中奖D.连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上5.如图,已知点A(m,m+3),点B(n,n﹣3)是反比例函数y=(k>0)在第一象限的图象上的两点,连接AB.将直线AB向下平移3个单位得到直线l,在直线l上任取一点C,则△ABC的面积为()A. B.6 C. D.96.如图5,一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面成30°夹角,这棵大树在折断前的高度为()A.10米 B.15米 C.25米 D.30米7.如图,在△ABC中,D、E分别是BC、AC上的点,且DE∥AB,若S△CDE:S△BDE=1:3,则S△CDE:S△ABE=()A.1:9 B.1:12C.1:16 D.1:208.计算的结果是()A. B. C. D.9.如图,直角△ABC中,,,,以A为圆心,AC长为半径画四分之一圆,则图中阴影部分的面积是()A. B.C. D.10.如图,将一把两边都带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O,另一边所在直线与半圆相交于点D、E,量出半径OC=5cm,弦DE=8cm,则直尺的宽度是()A.4cm B.3cm C.2cm D.1cm11.华为手机锁屏密码是6位数,若密码的前4位数字已经知道,则一次解锁该手机密码的概率是()A. B. C. D.12.如图,四边形是的内接四边形,与的延长线交于点,与的延长线交于点,,,则的度数为()A.38° B.48° C.58° D.68°二、填空题(每题4分,共24分)13.某校开展“节约每滴水”活动,为了了解开展活动一个月以来节约用水情况,从九年级的400名同学中选取20名同学统计了各自家庭一个月节约用水情况,如下表:节水量()0.20.250.30.4家庭数(个)4637请你估计这400名同学的家庭一个月节约用水的总量大约是_________.14.某种植基地2016年蔬菜产量为100吨,2018年蔬菜实际产量为121吨,则蔬菜产量的年平均增长率为____.15.某人感染了某种病毒,经过两轮传染共感染了121人.设该病毒一人平均每轮传染x人,则关于x的方程为_________.16.在中,,,,圆在内自由移动.若的半径为1,则圆心在内所能到达的区域的面积为______.17.一元二次方程有一个根为,二次项系数为1,且一次项系数和常数项都是非0的有理数,这个方程可以是_________.18.如图,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的P点处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为________米.三、解答题(共78分)19.(8分)如图所示,线段,,,,点为射线上一点,平分交线段于点(不与端点,重合).(1)当为锐角,且时,求四边形的面积;(2)当与相似时,求线段的长;(3)设,,求关于的函数关系式,并写出定义域.20.(8分)如图,已知直线y=x+2与x轴、y轴分别交于点B,C,抛物线y=x2+bx+c过点B、C,且与x轴交于另一个点A.(1)求该抛物线的表达式;(2)若点P是x轴上方抛物线上一点,连接OP.①若OP与线段BC交于点D,则当D为OP中点时,求出点P坐标.②在抛物线上是否存在点P,使得∠POC=∠ACO若存在,求出点P坐标;若不存在,请说明理由.21.(8分)在一个不透明的盒子中装有4张卡片.4张卡片的正面分别标有数字1,2,3,4,这些卡片除数字外都相同,将卡片搅匀.(1)从盒子任意抽取一张卡片,恰好抽到标有奇数卡片的概率是:;(2)先从盒子中任意抽取一张卡片,再从余下的3张卡片中任意抽取一张卡片,求抽取的2张卡片标有数字之和大于4的概率(请用画树状图或列表等方法求解).22.(10分)甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为﹣7,﹣1,1.乙袋中的三张卡片所标的数值为﹣2,1,2.先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出卡片上的数值,把x、y分别作为点A的横坐标和纵坐标.(1)用适当的方法写出点A(x,y)的所有情况.(2)求点A落在第三象限的概率.23.(10分)2019年6月,总书记对垃圾分类工作作出重要指示.实行垃圾分类,关系广大人民群众生活环境,关系节约使用资源,也是社会文明水平的一个重要体现.兴国县某校为培养学生垃圾分类的好习惯,在校园内摆放了几组垃圾桶,每组4个,分别是“可回收物”、“有害垃圾”、“厨余垃圾”和“其它垃圾”(如下图,分别记为A、B、C、D).小超同学由于上课没有听清楚老师的讲解,课后也没有认真学习教室里张贴的“垃圾分类常识”,对垃圾分类标准不是很清楚,于是先后将一个矿泉水瓶(简记为水瓶)和一张擦了汗的面巾纸(简记为纸巾)随机扔进了两个不同的垃圾桶。说明:矿泉水瓶属于“可回收物”,擦了汗的面巾纸属于“其它垃圾”.(1)小超将矿泉水瓶随机扔进4个垃圾桶中的某一个桶,恰好分类正确的概率是_____;(2)小超先后将一个矿泉水瓶和一张擦了汗的面巾纸随机扔进了两个不同的垃圾桶,请用画树状图或列表的方法,求出两个垃圾都分类错误的概率.24.(10分)已知二次函数的顶点坐标为,且其图象经过点,求此二次函数的解析式.25.(12分)小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元)(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?26.某中学举行“中国梦,我的梦”的演讲比赛,赛后整理参赛学生的成绩,将学生的成绩分为A、B、C、D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整,请你根据统计图解答下列问题.(1)参加比赛的学生共有名,在扇形统计图中,表示“D等级”的扇形的圆心角为度,图中m的值为;(2)补全条形统计图;(3)组委会决定分别从本次比赛中获利A、B两个等级的学生中,各选出1名学生培训后搭档去参加市中学生演讲比赛,已知甲的等级为A,乙的等级为B,求同时选中甲和乙的概率.
参考答案一、选择题(每题4分,共48分)1、C【分析】根据点与圆的位置关系即可求解.【详解】∵⊙O的半径为6cm,OP=8cm,∴点P到圆心的距离OP=8cm,大于半径6cm,∴点P在圆外,故选:C.【点睛】本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔d>r;②点P在圆上⇔d=r;③点P在圆内⇔d<r.2、C【分析】设平均每天票房的增长率为,根据第一天票房收入约8亿元,第三天票房收入达到了11.52亿元,即可得出关于的一元二次方程.【详解】解:设平均每天票房的增长率为,根据题意得:.故选:C.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.3、B【分析】由CD⊥AB,可得DM=1.设半径OD=Rcm,则可求得OM的长,连接OD,在直角三角形DMO中,由勾股定理可求得OD的长,继而求得答案.【详解】解:连接OD,设⊙O半径OD为R,
∵AB是⊙O的直径,弦CD⊥AB于点M,∴DM=CD=1cm,OM=R-2,在RT△OMD中,OD²=DM²+OM²即R²=1²+(R-2)²,解得:R=5,∴直径AB的长为:2×5=10cm.
故选B.【点睛】本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.4、D【解析】试题分析:选项A,袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机抽出一个球,一定是红球的概率是,本选项错误;选项B,天气预报“明天降水概率10%”,是指明天有10%的概率会下雨,本选项错误;选项C,某地发行一种福利彩票,中奖率是千分之一,那么,买这种彩票1000张,可能会中奖,也可能不中奖,本选项错误;选项D、连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上,本选项正确.故答案选D.考点:概率的意义5、A【分析】由点A(m,m+3),点B(n,n﹣3)在反比例函数y=(k>0)第一象限的图象上,可得到m、n之间的关系,过点A、B分别作x轴、y轴的平行线,构造直角三角形,可求出直角三角形的直角边的长,由平移可得直角三角形的直角顶点在直线l上,进而将问题转化为求△ADB的面积.【详解】解:∵点A(m,m+3),点B(n,n﹣3)在反比例函数y=(k>0)第一象限的图象上,∴k=m(m+3)=n(n﹣3),即:(m+n)(m﹣n+3)=0,∵m+n>0,∴m﹣n+3=0,即:m﹣n=﹣3,过点A、B分别作x轴、y轴的平行线相交于点D,∴BD=xB﹣xA=n﹣m=3,AD=yA﹣yB=m+3﹣(n﹣3)=m﹣n+6=3,又∵直线l是由直线AB向下平移3个单位得到的,∴平移后点A与点D重合,因此,点D在直线l上,∴S△ACB=S△ADB=AD•BD=,故选:A.【点睛】本题主要考察反比例函数与一次函数的交点问题,解题关键是熟练掌握计算法则.6、B【分析】如图,在Rt△ABC中,∠ABC=30°,由此即可得到AB=2AC,而根据题意找到CA=5米,由此即可求出AB,也就求出了大树在折断前的高度.【详解】解:如图,在Rt△ABC中,∵∠ABC=30°,∴AB=2AC,而CA=5米,∴AB=10米,∴AB+AC=15米.所以这棵大树在折断前的高度为15米.故选B.【点睛】本题主要利用定理--在直角三角形中30°的角所对的直角边等于斜边的一半,解题关键是善于观察题目的信息,利用信息解决问题.7、B【分析】由S△CDE:S△BDE=1:3得CD:BD=1:3,进而得到CD:BC=1:4,然后根据DE∥AB可得△CDE∽△CAB,利用相似三角形的性质得到,然后根据面积和差可求得答案.【详解】解:过点H作EH⊥BC交BC于点H,∵S△CDE:S△BDE=1:3,∴CD:BD=1:3,∴CD:BC=1:4,∵DE∥AB,∴△CDE∽△CBA,∴,∵S△ABC=S△CDE+S△BDE+S△ABE,∴S△CDE:S△ABE=1:12,故选:B.【点睛】本题综合考查相似三角形的判定与性质,三角形的面积等知识,解题关键是掌握相似三角形的判定与性质.8、D【分析】根据同底数幂相乘的运算公式进行计算即可.【详解】解:=故选:D.【点睛】本题考查同底数幂相乘的运算,熟练掌握运算公式是解题的关键.9、A【分析】连结AD.根据图中阴影部分的面积=三角形ABC的面积-三角形ACD的面积-扇形ADE的面积,列出算式即可求解.【详解】解:连结AD.
∵直角△ABC中,∠A=90°,∠B=30°,AC=4,
∴∠C=60°,AB=4,
∵AD=AC,
∴三角形ACD是等边三角形,
∴∠CAD=60°,
∴∠DAE=30°,
∴图中阴影部分的面积=4×4÷2-4×2÷2-=4-π.
故选A.【点睛】本题考查了扇形面积的计算,解题的关键是将不规则图形的面积计算转化为规则图形的面积计算.10、B【分析】过点O作OM⊥DE于点M,连接OD,根据垂径定理“垂直于弦的直径平分弦,并且平分弦所对的两条弧”和勾股定理进行计算,即可求出答案.【详解】过点O作OM⊥DE于点M,连接OD.∴DE=12∵DE=8cm,∴DM=4cm,在Rt△ODM中,∵OD=OC=5cm,∴OM=∴直尺的宽度为3cm.故答案选B.【点睛】本题主要考查了垂径定理和勾股定理,灵活运用这些定理是解答本题的关键.11、C【分析】根据排列组合,求出最后两位数字共存在多少种情况,即可求解一次解锁该手机密码的概率.【详解】根据题意,我们只需解锁后两位密码即可,两位数字的排列有种可能∴一次解锁该手机密码的概率是故答案为:C.【点睛】本题考查了排列组合的问题,掌握排列组合的公式是解题的关键.12、A【分析】根据三角形的外角性质求出,然后根据圆内接四边形的性质和三角形内角和定理计算即可.【详解】解:=故选A【点睛】本题考查了圆周角定理及其推论.二、填空题(每题4分,共24分)13、1【分析】先计算这20名同学各自家庭一个月的节水量的平均数,即样本平均数,然后乘以总数400即可解答.【详解】解:20名同学各自家庭一个月平均节约用水是:
(0.2×4+0.25×6+0.3×3+0.4×7)÷20=0.3(m3),
因此这400名同学的家庭一个月节约用水的总量大约是:
400×0.3=1(m3),
故答案为:1.【点睛】本题考查了通过样本去估计总体,只需将样本“成比例地放大”为总体即可,关键是求出样本的平均数.14、10%【分析】2016年到2018年是2年的时间,设年增长率为x,可列式100×=121,解出x即可.【详解】设平均年增长率为x,可列方程100×=121解得x=10%故本题答案应填10%.【点睛】本题考查了一元二次函数的应用问题.15、【分析】设每轮传染中平均一个人传染了x个人,则第一轮传染了x个人,第二轮作为传染源的是(x+1)人,则传染x(x+1)人,依题意列方程:1+x+x(1+x)=1.【详解】整理得,.
故答案为:.【点睛】本题考查了由实际问题抽象出一元二次方程.关键是得到两轮传染数量关系,从而可列方程求解.16、24【分析】根据题意做图,圆心在内所能到达的区域为△EFG,先求出AB的长,延长BE交AC于H点,作HM⊥AB于M,根据圆的性质可知BH平分∠ABC,故CH=HM,设CH=x=HM,根据Rt△AMH中利用勾股定理求出x的值,作EK⊥BC于K点,利用△BEK∽△BHC,求出BK的长,即可求出EF的长,再根据△EFG∽△BCA求出FG,即可求出△EFG的面积.【详解】如图,由题意点O所能到达的区域是△EFG,连接BE,延长BE交AC于H点,作HM⊥AB于M,EK⊥BC于K,作FJ⊥BC于J.∵,,,∴AB=根据圆的性质可知BH平分∠ABC∴故CH=HM,设CH=x=HM,则AH=12-x,BM=BC=9,∴AM=15-9=6在Rt△AMH中,AH2=HM2+AM2即AH2=HM2+AM2(12-x)2=x2+62解得x=4.5∵EK∥AC,∴△BEK∽△BHC,∴,即∴BK=2,∴EF=KJ=BC-BK-JC=9-2-1=6,∵EG∥AB,EF∥AC,FG∥BC,∴∠EGF=∠ABC,∠FEG=∠CAB,∴△EFG∽△ACB,故,即解得FG=8∴圆心在内所能到达的区域的面积为FG×EF=×8×6=24,故答案为24.【点睛】此题主要考查相似三角形的判定与性质综合,解题的关键是熟知勾股定理、相似三角形的判定与性质.17、【分析】根据有理系数一元二次方程若有一根为,则必有另一根为求解即可.【详解】根据题意,方程的另一个根为,∴这个方程可以是:,即:,故答案是:,【点睛】本题考查了一元二次方程根与系数的关系,正确理解“有理系数一元二次方程若有一根为,则必有另一根为”是解题的关键.18、22.5【解析】根据题意画出图形,构造出△PCD∽△PAB,利用相似三角形的性质解题.解:过P作PF⊥AB,交CD于E,交AB于F,如图所示设河宽为x米.∵AB∥CD,∴∠PDC=∠PBF,∠PCD=∠PAB,∴△PDC∽△PBA,∴,∴,依题意CD=20米,AB=50米,∴,解得:x=22.5(米).答:河的宽度为22.5米.三、解答题(共78分)19、(1)16;(2)2或;(3)【分析】(1)过C作CH⊥AB与H,在Rt△BCH中,求出CH、BH,再求出CD即可解决问题;
(2)分两种情形①∠BCE=∠BAE=90°,由BE=BE,得△BEC≌△BEA;②∠BEC=∠BAE=90°,延长CE交BA延长线于T,得△BEC≌△BET;分别求解即可;
(3)根据DM∥AB,得,构建函数关系式即可;【详解】解:(1)如图,过作于,∵,,∴四边形为矩形.在中,,,,∴,∴,则四边形的面积.(2)∵平分,∴,当与相似时,①,∵,∴,∴,在中,,∴.②,延长交延长线于,∵,,,∴,∴,,∵,∴.令,则在中,,,,∴,解得.综上,当与相似时,线段的长为2或.(3)延长交延长线于,∵,∴,∴.在中,.则,又∵,∴,即,解得.【点睛】本题考查了全等三角形与相似三角形的判定和性质,三角函数,勾股定理,以及二次函数的应用,正确作出辅助线构造相似三角形与全等三角形是解题的关键.20、(2)y=﹣x2+x+2;(2)①点P坐标为(2,3);②存在点P(,﹣2)或(,﹣7)使得∠POC=∠ACO【分析】(2)与x轴、y轴分别交于点B(4,0)、C(0,2),由题意可得即可求解;(2)①过点P作PE∥OC,交BC于点E.根据题意得出△OCD≌△PED,从而得出PE=OC=2,再根据即可求解;②当点P在y轴右侧,PO∥AC时,∠POC=∠ACO.抛物线与x轴交于A,B两点,点A在点B左侧,则点A坐标为(-2,0).则直线AC的解析式为y=2x+2.直线OP的解析式为y=2x,即可求解;当点P在y轴右侧,设OP与直线AC交于点G,当CG=OG时,∠POC=∠ACO,根据等腰三角形三线合一,则CF=OF=2,可得:点G坐标为即可求解.【详解】(2)∵y=﹣x+2与x轴、y轴分别交于点B(4,0)、C(0,2).由题意可得,解得:,∴抛物线的表达式为y=﹣x2+x+2;(2)①如图,过点P作PE∥OC,交BC于点E.∵点D为OP的中点,∴△OCD≌△PED(AAS),∴PE=OC=2,设点P坐标为(m,﹣m2+m+2),点E坐标为(m,﹣m+2),则PE=(﹣m2+m+2)﹣(﹣m+2)=﹣m2+2m=2,解得m2=m2=2.∴点P坐标为(2,3);②存在点P,使得∠POC=∠ACO.理由:分两种情况讨论.如上图,当点P在y轴右侧,PO∥AC时,∠POC=∠ACO.∵抛物线与x轴交于A,B两点,点A在点B左侧,∴点A坐标为(﹣2,0).∴直线AC的解析式为y=2x+2.∴直线OP的解析式为y=2x,解方程组,解得:x=(舍去负值)∴点P坐标为(,﹣2).如图,当点P在y轴右侧,设OP与直线AC交于点G,当CG=OG时∠POC=∠ACO,过点G作GF⊥OC,垂足为F.根据等腰三角形三线合一,则CF=OF=2.∴可得点G坐标为(﹣,2)∴直线OG的解析式为y=﹣2x;把y=﹣2x代入抛物线表达式并解得x=(不合题意值已舍去).∴点P坐标为(,﹣7).综上所述,存在点P(,﹣2)或(,﹣7)使得∠POC=∠ACO.【点睛】本题考查的是二次函数综合运用,涉及到一次函数、三角形全等、解直角三角形、等腰三角形的性质等,其中(2)②,要注意分类求解,避免遗漏.21、(1);(2).【解析】(1)共4张卡片,奇数卡片有2张,利用概率公式直接进行计算即可;(2)画出表格,数出总情况数,数出抽取的2张卡片标有数字之和大于4的情况数,再利用概率公式进行计算即可【详解】(1)共4张卡片,奇数卡片有2张,所以恰好抽到标有奇数卡片的概率是(2)表格如下一共有12种情况,其中2张卡片标有数字之和大于4的有8种情况,所以答:从盒子任意抽取一张卡片,恰好抽到标有奇数卡片的概率是,抽取的2张卡片标有数字之和大于4的概率为.【点睛】本题主要考查利用画树状图或列表求概率问题,本题关键在于能够列出表格22、(1)(﹣7,﹣2),(﹣1,﹣2),(1,﹣2),(﹣7,1),(﹣1,1),(1,1),(﹣7,2),(﹣1,2),(1,2);(2).【分析】列表法或树状图法,平面直角坐标系中各象限点的特征,概率.(1)直接利用表格或树状图列举即可解答.(2)利用(1)中的表格,根据第三象限点(-,-)的特征求出点A落在第三象限共有两种情况,再除以点A的所有情况即可.【详解】解:(1)列表如下:﹣7﹣11﹣2(﹣7,﹣2)(﹣1,﹣2)(1,﹣2)1(﹣7,1)(﹣1,1)(1,1)2(﹣7,2)(﹣1,2)(1,2)点A(x,y)共9种情况.(2)∵点A落在第三象限共有(﹣7,﹣2),(﹣1,﹣2)两种情况,∴点A落在第三象限的概率是.23、(1);(2)【分析】(1)根据概率公式即可得答案;(2)画出树状图,可得出总情况数和两个垃圾都分类错误的情况数,利用概率公式即可得答案.【详解】(1)∵共有4组,每组4个桶,∴共有16个桶,∵分类正确的有4个桶,∴分类正确的概率为=.(2)画树状图得:∵共有12种等可能的结果,两个垃圾都分类错误的情况有7种:BA,BC,CA,CB,DA,DB,DC∴P(两个垃圾都分类错误)=.【点睛】本题考查利用列表法或树状图法求概率,概率=所求情况数与总情况数的比;熟练掌握概率公式是解题关键.24、【分析】根据已知顶点坐标,利用待定系数法可设二次函数的解析式为,代入坐标求解即可求得二次函数的解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025标准国有企业员工劳动合同
- 2025年房屋买卖合同的履行与违约行为解析
- 2024年日用织物制品项目资金筹措计划书代可行性研究报告
- 2025电子产品转让合同范本
- 2025年合同履行过程中的变更解析
- 2025网站设计服务合同范本
- 2025年北京市劳动合同模板
- 2025年杭州市劳动合同范本全文
- 2025短期劳动合同全面解析
- 2025网站建设合同协议模板
- GB/T 4706.53-2024家用和类似用途电器的安全第53部分:坐便器的特殊要求
- 化工企业重大事故隐患判定标准培训考试卷(后附答案)
- 《智能网联汽车用摄像头硬件性能要求及试验方法》编制说明
- 2024公务员培训合同协议书模板
- 2024年3月ITSMS信息技术服务管理体系基础(真题卷)
- 停工检修安全方案
- 节能评审和节能评估文件编制费用收费标准
- 2023-2024年《劳务劳动合同样本范本书电子版模板》
- 企业财务风险防范的参考文献
- 中国居民口腔健康状况第四次中国口腔健康流行病学调查报告
- MOOC 数据挖掘-国防科技大学 中国大学慕课答案
评论
0/150
提交评论