2023-2024学年湖南长沙一中学岳麓中学数学九上期末综合测试模拟试题含解析_第1页
2023-2024学年湖南长沙一中学岳麓中学数学九上期末综合测试模拟试题含解析_第2页
2023-2024学年湖南长沙一中学岳麓中学数学九上期末综合测试模拟试题含解析_第3页
2023-2024学年湖南长沙一中学岳麓中学数学九上期末综合测试模拟试题含解析_第4页
2023-2024学年湖南长沙一中学岳麓中学数学九上期末综合测试模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年湖南长沙一中学岳麓中学数学九上期末综合测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,∠1=∠2,要使△ABC∽△ADE,只需要添加一个条件即可,这个条件不可能是()A.∠B=∠D B.∠C=∠E C. D.2.如图,D是等边△ABC外接圆上的点,且∠CAD=20°,则∠ACD的度数为()A.20° B.30° C.40° D.45°3.己知点都在反比例函数的图象上,则()A. B. C. D.4.将抛物线先向左平移2个单位,再向下平移3个单位,得到的新抛物线的表达式为()A. B.C. D.5.已知锐角α,且sinα=cos38°,则α=()A.38° B.62° C.52° D.72°6.如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABCC.AB2=AD•AC D.7.下列计算①②③④⑤,其中任意抽取一个,运算结果正确的概率是()A. B. C. D.8.下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=09.若关于的方程有两个相等的根,则的值为()A.10 B.10或14 C.-10或14 D.10或-1410.如图,▱ABCD的对角线相交于点O,且,过点O作交BC于点E,若的周长为10,则▱ABCD的周长为A.14 B.16 C.20 D.18二、填空题(每小题3分,共24分)11.如图,在△ABC中,AB=4,BC=7,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为__________.12.圆内接正六边形一边所对的圆周角的度数是__________.13.如图,已知圆周角∠ACB=130°,则圆心角∠AOB=______.14.某剧场共有个座位,已知每行的座位数都相同,且每行的座位数比总行数少,求每行的座位数.如果设每行有个座位,根据题意可列方程为_____________.15.如图,矩形ABCD中,AB=1,AD=.以A为圆心,AD的长为半径做弧交BC边于点E,则图中的弧长是_______.16.抛物线y=x2+2x+3的顶点坐标是_____________.17.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,AB为半圆的直径,抛物线的解析式为y=x2﹣2x﹣3,求这个“果圆”被y轴截得的线段CD的长.18.计算:__________.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,△ABC顶点的坐标分别为A(﹣3,3),B(﹣5,2),C(﹣1,1).(1)以点C为位似中心,作出△ABC的位似图形△A1B1C,使其位似比为1:2,且A₁B₁C位于点C的异侧,并表示出点A1的坐标.(2)作出△ABC绕点C顺时针旋转90°后的图形△A2B2C.(3)在(2)的条件下求出点B经过的路径长(结果保留π).20.(6分)某养殖场计划用96米的竹篱笆围成如图所示的①、②、③三个养殖区域,其中区域①是正方形,区域②和③是矩形,且AG∶BG=3∶1.设BG的长为1x米.(1)用含x的代数式表示DF=;(1)x为何值时,区域③的面积为180平方米;(3)x为何值时,区域③的面积最大?最大面积是多少?21.(6分)定义:如果三角形的两个内角与满足,那么称这样的三角形为“类直角三角形”.尝试运用(1)如图1,在中,,,,是的平分线.①证明是“类直角三角形”;②试问在边上是否存在点(异于点),使得也是“类直角三角形”?若存在,请求出的长;若不存在,请说明理由.类比拓展(2)如图2,内接于,直径,弦,点是弧上一动点(包括端点,),延长至点,连结,且,当是“类直角三角形”时,求的长.22.(8分)某中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学代表学校参加全市汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.23.(8分)已知二次函数.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图,当m=2时,该抛物线与y轴交于点C,顶点为D,求C、D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由.24.(8分)如图,在平面直角坐标系中,点的坐标分别是,.(1)将绕点逆时针旋转得到,点,对应点分别是,,请在图中画出,并写出,的坐标;(2)以点为位似中心,将作位似变换且缩小为原来的,在网格内画出一个符合条件的.25.(10分)如图,AN是⊙O的直径,四边形ABMN是矩形,与圆相交于点E,AB=15,D是⊙O上的点,DC⊥BM,与BM交于点C,⊙O的半径为R=1.(1)求BE的长.(2)若BC=15,求的长.26.(10分)如图,在△ABC中,∠A为钝角,AB=25,AC=39,,求tanC和BC的长.

参考答案一、选择题(每小题3分,共30分)1、D【分析】先求出∠DAE=∠BAC,再根据相似三角形的判定方法分析判断即可.【详解】∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,∴∠DAE=∠BAC,A、添加∠B=∠D可利用两角法:有两组角对应相等的两个三角形相似可得△ABC∽△ADE,故此选项不合题意;B、添加∠C=∠E可利用两角法:有两组角对应相等的两个三角形相似可得△ABC∽△ADE,故此选项不合题意;C、添加可利用两边及其夹角法:两组边对应成比例且夹角相等的两个三角形相似,故此选项不合题意;D、添加不能证明△ABC∽△ADE,故此选项符合题意;故选:D.【点睛】本题考查相似三角形的判定,解题的关键是掌握相似三角形判定方法:两角法、两边及其夹角法、三边法、平行线法.2、C【分析】根据圆内接四边形的性质得到∠D=180°-∠B=120°,根据三角形内角和定理计算即可.【详解】∴∠B=60°,∵四边形ABCD是圆内接四边形,∴∠D=180°−∠B=120°,∴∠ACD=180°−∠DAC−∠D=40°,故选C.3、D【解析】试题解析:∵点A(1,y1)、B(1,y1)、C(-3,y3)都在反比例函数y=的图象上,∴y1=-;y1=-1;y3=,

∵>->-1,

∴y3>y1>y1.

故选D.4、D【分析】根据抛物线的平移规律:左加右减,上加下减,即可得解.【详解】由题意,得平移后的抛物线为故选:D.【点睛】此题主要考查抛物线的平移规律,熟练掌握,即可解题.5、C【分析】根据一个角的正弦值等于它的余角的余弦值求解即可.【详解】∵sinα=cos38°,

∴α=90°-38°=52°.

故选C.【点睛】本题考查了锐角三角函数的性质,掌握正余弦的转换方法:一个角的正弦值等于它的余角的余弦值.6、D【分析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.【详解】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、=不能判定△ADB∽△ABC,故此选项符合题意.故选D.【点睛】点评:本题考查了相似三角形的判定,利用了有两个角对应相等的三角形相似,两边对应成比例且夹角相等的两个三角形相似.7、A【解析】根据计算结果和概率公式求解即可.【详解】运算结果正确的有⑤,则运算结果正确的概率是,故选:A.【点睛】考核知识点:求概率.熟记公式是关键.8、B【解析】分析:根据一元二次方程根的判别式判断即可.详解:A、x2+6x+9=0.△=62-4×9=36-36=0,方程有两个相等实数根;B、x2=x.x2-x=0.△=(-1)2-4×1×0=1>0.方程有两个不相等实数根;C、x2+3=2x.x2-2x+3=0.△=(-2)2-4×1×3=-8<0,方程无实根;D、(x-1)2+1=0.(x-1)2=-1,则方程无实根;故选B.点睛:本题考查的是一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.9、D【分析】根据题意利用根的判别式,进行分析计算即可得出答案.【详解】解:∵关于的方程有两个相等的根,∴,即有,解得10或-14.故选:D.【点睛】本题考查的是根的判别式,熟知一元二次方程中,当时,方程有两个相等的两个实数根是解答此题的关键.10、C【解析】由平行四边形的性质得出,,,再根据线段垂直平分线的性质得出,由的周长得出,即可求出平行四边形ABCD的周长.【详解】解:四边形ABCD是平行四边形,,,,,,的周长为10,,平行四边形ABCD的周长;故选:C.【点睛】本题考查了平行四边形的性质、线段垂直平分线的性质以及三角形、平行四边形周长的计算;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.二、填空题(每小题3分,共24分)11、3【解析】试题解析:由旋转的性质可得:AD=AB,∴△ABD是等边三角形,∴BD=AB,∵AB=4,BC=7,∴CD=BC−BD=7−4=3.故答案为3.12、30°或150°【分析】求出一条边所对的圆心角的度数,再根据圆周角和圆心角的关系解答.【详解】解:圆内接正六边形的边所对的圆心角360°÷6=60°,圆内接正六边形的一条边所对的弧可能是劣弧,也可能是优弧,

根据一条弧所对的圆周角等于它所对圆心角的一半,

所以圆内接正六边形的一条边所对的圆周角的度数是30°或150°,故答案为30°或150°.【点睛】本题考查学生对正多边形的概念掌握和计算的能力,涉及的知识点有正多边形的中心角、圆周角与圆心角的关系,属于基础题,要注意分两种情况讨论.13、100゜【分析】根据圆周角定理,由∠ACB=130°,得到它所对的圆心角∠α=2∠ACB=260°,用360°-260°即可得到圆心角∠AOB.【详解】如图,∵∠α=2∠ACB,而∠ACB=130°,∴∠α=260°,∴∠AOB=360°-260°=100°.故答案为100°.14、x(x+12)=1【分析】设每行有个座位,根据等量关系,列出一元二次方程,即可.【详解】设每行有个座位,则总行数为(x+12)行,根据题意,得:x(x+12)=1,故答案是:x(x+12)=1.【点睛】本题主要考查一元二次方程的实际应用,找出等量关系,列出方程,是解题的关键.15、π【分析】根据题意可得AD=AE=,则可以求出sin∠AEB,可以判断出可判断出∠AEB=45°,进一步求解∠DAE=∠AEB=45°,代入弧长得到计算公式可得出弧DE的长度.【详解】解:∵AD半径画弧交BC边于点E,AD=

∴AD=AE=,

又∵AB=1,

∴∴∠AEB=45°,∵四边形ABCD是矩形∴AD∥BC∴∠DAE=∠AEB=45°,

故可得弧DC的长度为==π,

故答案为:π.【点睛】此题考查了弧长的计算公式,解答本题的关键是求出∠DAE的度数,要求我们熟练掌握弧长的计算公式及解直角三角形的知识.16、(﹣1,2)【详解】解:将二次函数转化成顶点式可得:y=,则函数的顶点坐标为(-1,2)故答案为:(-1,2)【点睛】本题考查二次函数的顶点坐标.17、这个“果圆”被y轴截得的线段CD的长3+.【分析】连接AC,BC,有抛物线的解析式可求出A,B,C的坐标,进而求出AO,BO,DO的长,在直角三角形ACB中,利用射影定理可求出CO的长,进而可求出CD的长.【详解】连接AC,BC,∵抛物线的解析式为y=(x-1)2-4,∴点D的坐标为(0,−3),∴OD的长为3,设y=0,则0=(x-1)2-4,解得:x=−1或3,∴A(−1,0),B(3,0)∴AO=1,BO=3,∵AB为半圆的直径,∴∠ACB=90°,∵CO⊥AB,∴CO2=AO⋅BO=3,∴CO=,∴CD=CO+OD=3+,故答案为3+.18、【分析】本题涉及零指数幂、负整数指数幂、二次根式化简三个考点,在计算时需要针对每个考点分别进行计算,然后再进行加减运算即可.【详解】3-4-1=-2.故答案为:-2.【点睛】本题考查的是实数的运算能力,注意要正确掌握运算顺序及运算法则.三、解答题(共66分)19、(1)见解析,A1(3,﹣3);(2)见解析;(3)【分析】(1)延长BC到B1,使B1C=2BC,延长AC到A1,使A1C=2AC,再顺次连接即可得△A1B1C,再写出A1坐标即可;(2)分别作出A,B绕C点顺时针旋转90°后的对应点A2,B2,再顺次连接即可得△A2B2C.(3)点B的运动路径为以C为圆心,圆心角为90°的弧长,利用弧长公式即可求解.【详解】解:(1)如图,△A1B1C为所作,点A1的坐标为(3,﹣3);(2)如图,△A2B2C为所作;(3)CB=,所以点B经过的路径长=π.【点睛】本题考查网格作图与弧长计算,熟练掌握位似与旋转作图,以及弧长公式是解题的关键.20、(1)48-11x;(1)x为1或3;(3)x为1时,区域③的面积最大,为140平方米【分析】(1)将DF、EC以外的线段用x表示出来,再用96减去所有线段的长再除以1可得DF的长度;(1)将区域③图形的面积用关于x的代数式表示出来,并令其值为180,求出方程的解即可;(3)令区域③的面积为S,得出x关于S的表达式,得到关于S的二次函数,求出二次函数在x取值范围内的最大值即可.【详解】(1)48-11x(1)根据题意,得5x(48-11x)=180,解得x1=1,x1=3答:x为1或3时,区域③的面积为180平方米(3)设区域③的面积为S,则S=5x(48-11x)=-60x1+140x=-60(x-1)1+140∵-60<0,∴当x=1时,S有最大值,最大值为140答:x为1时,区域③的面积最大,为140平方米【点睛】本题考查了二次函数的实际应用,解题的关键是正确理解题中的等量关系,正确得出区域面积的表达式.21、(1)①证明见解析,②存在,;(2)或.【分析】(1)①证明∠A+2∠ABD=90°即可解决问题.

②如图1中,假设在AC边设上存在点E(异于点D),使得△ABE是“类直角三角形”.证明△ABC∽△BEC,可得,由此构建方程即可解决问题.

(2)分两种情形:①如图2中,当∠ABC+2∠C=90°时,作点D关于直线AB的对称点F,连接FA,FB.则点F在⊙O上,且∠DBF=∠DOA.

②如图3中,由①可知,点C,A,F共线,当点E与D共线时,由对称性可知,BA平分∠FBC,可证∠C+2∠ABC=90°,利用相似三角形的性质构建方程即可解决问题.【详解】(1)①证明:如图1中,∵是的角平分线,∴,∵,∴,∴,∴为“类直角三角形”.②如图1中,假设在边设上存在点(异于点),使得是“类直角三角形”.在中,∵,,∴,∵,∴,∵∴,∴,∴,∴,(2)∵是直径,∴,∵,,∴,①如图2中,当时,作点关于直线的对称点,连接,.则点在上,且,∵,且,∴,∴,,共线,∵∴,∴,∴,即∴.②如图3中,由①可知,点,,共线,当点与共线时,由对称性可知,平分,∴,∵,,∴,∴,即,∴,且中解得综上所述,当是“类直角三角形”时,的长为或.【点睛】本题考查了相似三角形的判定和性质,“类直角三角形”的定义等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题.22、(1)见解析;(2)【解析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得恰好选派一男一女两位同学参赛的有8种情况,然后利用概率公式求解即可求得答案.【详解】(1)画树状图得:(2)∵恰好选派一男一女两位同学参赛的有8种情况,∴恰好选派一男一女两位同学参赛的概率为:.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.23、(1)或;(2)C点坐标为:(0,3),D(2,-1);(3)P(,0).【分析】(1)根据二次函数的图象经过坐标原点O(0,0),直接代入求出m的值即可.(2)把m=2,代入求出二次函数解析式,利用配方法求出顶点坐标以及图象与y轴交点即可.(3)根据两点之间线段最短的性质,当P、C、D共线时PC+PD最短,利用相似三角形的判定和性质得出PO的长即可得出答案.【详解】解:(1)∵二次函数的图象经过坐标原点O(0,0),∴代入得:,解得:m=±1.∴二次函数的解析式为:或.(2)∵m=2,∴二次函数为:.∴抛物线的顶点为:D(2,-1).当x=0时,y=3,∴C点坐标为:(0,3).(3)存在,当P、C、D共线时PC+PD最短.过点D作DE⊥y轴于点E,∵PO∥DE,∴△COP∽△CED.∴,即,解得:∴PC+PD最短时,P点的坐标为:P(,0).24、(1)见解析,,;(2)见解析【分析】(1)利用网格特点和旋转的性质,画出点O,B对应点E,F,从而得到△AEF,然后写出E、F的坐标;

(2)分别连接OE、OF,然后分别去OA、OE、OF的三等份点得到A1、E1、F1,从而得到△A1E1F1.【详解】解:(1)如图,为所作,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论