版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年福建省龙岩市五县九年级数学第一学期期末经典模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.下列事件为必然事件的是()A.袋中有4个蓝球,2个绿球,共6个球,随机摸出一个球是红球B.三角形的内角和为180°C.打开电视机,任选一个频道,屏幕上正在播放广告D.抛掷一枚硬币两次,第一次正面向上,第二次反面向上2.在平面直角坐标系中,把抛物线y=2x2绕原点旋转180°,再向右平移1个单位,向下平移2个单位,所得的抛物线的函数表达式为()A.y=2(x﹣1)2﹣2 B.y=2(x+1)2﹣2C.y=﹣2(x﹣1)2﹣2 D.y=﹣2(x+1)2﹣23.要将抛物线平移后得到抛物线,下列平移方法正确的是()A.向左平移1个单位,再向上平移2个单位. B.向左平移1个单位,再向下平移2个单位.C.向右平移1个单位,再向上平移2个单位. D.向右平移1个单位,再向下平移2个单位.4.与三角形三个顶点距离相等的点,是这个三角形的()A.三条中线的交点B.三条角平分线的交点C.三条高的交点D.三边的垂直平分线的交点5.如图,二次函数()图象的顶点为,其图象与轴的交点,的横坐标分别为和1.下列结论:①;②;③;④当时,是等腰直角三角形.其中结论正确的个数是()A.4个 B.1个 C.2个 D.1个6.反比例函数(x<0)如图所示,则矩形OAPB的面积是()A.-4 B.-2 C.2 D.47.如图,在△ABC中,点D,E,F分别是边AB,AC,BC上的点,DE∥BC,EF∥AB,且AD∶DB=3∶5,那么CF∶CB等于()A.5∶8 B.3∶8 C.3∶5 D.2∶58.已知一个几何体从三个不同方向看到的图形如图所示,则这个几何体是()A.三棱柱 B.三棱锥 C.圆柱 D.圆锥9.下面的图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.10.如图,△OAB与△OCD是以点0为位似中心的位似图形,相似比为1:2,∠OCD=90,CO=CD.若B(2,0),则点C的坐标为()A.(2,2) B.(1,2) C.(,2) D.(2,1)11.如图,,、,…是分别以、、,…为直角顶点,一条直角边在轴正半轴上的等腰直角三角形,其斜边的中点,,,…均在反比例函数()的图象上.则的值为()A. B.6 C. D.12.已知点(﹣4,y1)、(4,y2)都在函数y=x2﹣4x+5的图象上,则y1、y2的大小关系为()A.y1<y2 B.y1>y2 C.y1=y2 D.无法确定二、填空题(每题4分,共24分)13.若抛物线y=x2﹣4x+m与直线y=kx﹣13(k≠0)交于点(2,﹣9),则关于x的方程x2﹣4x+m=k(x﹣1)﹣11的解为_____.14.如图,一个小球由地面沿着坡度i=1:2的坡面向上前进了10m,此时小球距离出发点的水平距离为__m.15.关于的方程有一个根,则另一个根________.16.方程的根为.17.一天早上,王霞从家出发步行上学,出发6分钟后王霞想起数学作业没有带,王霞立即打电话叫爸爸骑自行车把作业送来(接打电话和爸爸出门的时间忽略不计),同时王霞把速度降低到前面的一半.爸爸骑自行车追上王霞后立即掉头以原速赶往位于家的另一边的单位上班,王霞拿到作业后立即改为慢跑上学,慢跑的速度是最开始步行速度的2倍,最后王霞比爸爸早10分钟到达目的地.如图反映了王霞与爸爸之间的距离(米)与王霞出发后时间(分钟)之间的关系,则王霞的家距离学校有__________米.18.如图,铅球运动员掷铅球的高度y(m)与水平距离x(m)之间的函数关系式是y=﹣x2+x+,则该运动员此次掷铅球的成绩是_____m.三、解答题(共78分)19.(8分)小涛根据学习函数的经验,对函数的图像与性质进行了探究,下面是小涛的探究过程,请补充完整:(1)下表是与的几组对应值...-2-10123......-8-30mn13...请直接写出:=,m=,n=;(2)如图,小涛在平面直角坐标系中,描出了上表中已经给出的部分对应值为坐标的点,再描出剩下的点,并画出该函数的图象;(3)请直接写出函数的图像性质:;(写出一条即可)(4)请结合画出的函数图象,解决问题:若方程有三个不同的解,请直接写出的取值范围.20.(8分)问题提出(1)如图①,在中,,求的面积.问题探究(2)如图②,半圆的直径,是半圆的中点,点在上,且,点是上的动点,试求的最小值.问题解决(3)如图③,扇形的半径为在选点,在边上选点,在边上选点,求的长度的最小值.21.(8分)如图,为的直径,切于点,交的延长线于点,且.(1)求的度数.(2)若的半径为2,求的长.22.(10分)一艘渔船在A处观测到东北方向有一小岛C,已知小岛C周围4.8海里范围内是水产养殖场.渔船沿北偏东30°方向航行10海里到达B处,在B处测得小岛C在北偏东60°方向,这时渔船改变航线向正东(即BD)方向航行,这艘渔船是否有进入养殖场的危险?23.(10分)在国家的宏观调控下,某市的商品房成交价由去年10月份的14000元/下降到12月份的11340元/.(1)求11、12两月份平均每月降价的百分率是多少?(2)如果房价继续回落,按此降价的百分率,你预测到今年2月份该市的商品房成交均价是否会跌破10000元/?请说明理由24.(10分)如图,在四边形ABCD中,AB∥DC,BC>AD,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0<t<5).(1)求证:△ACD∽△BAC;(2)求DC的长;(3)试探究:△BEF可以为等腰三角形吗?若能,求t的值;若不能,请说明理由.25.(12分)关于的一元二次方程有两个不等实根,.(1)求实数的取值范围;(2)若方程两实根,满足,求的值。26.用适当的方法解下列一元二次方程:(1)x(2x﹣5)=4x﹣1.(2)x2+5x﹣4=2.
参考答案一、选择题(每题4分,共48分)1、B【解析】确定事件包括必然事件和不可能事件,必然事件指在一定条件下,一定发生的事件,不可能事件是指在一定条件下,一定不发生的事件;【详解】A.袋中有4个蓝球,2个绿球,共6个球,随机摸出一个球是红球是不可能事件;B.三角形的内角和为180°是必然事件;C.打开电视机,任选一个频道,屏幕上正在播放广告是随机事件;D.抛掷一枚硬币两次,第一次正面向上,第二次反面向上是随机事件;故选:B.【点睛】此题考查随机事件,解题关键在于掌握其定义2、C【分析】抛物线y=1x1绕原点旋转180°,即抛物线上的点(x,y)变为(-x,-y),代入可得抛物线方程,然后根据左加右减的规律即可得出结论.【详解】解:∵把抛物线y=1x1绕原点旋转180°,∴新抛物线解析式为:y=﹣1x1,∵再向右平移1个单位,向下平移1个单位,∴平移后抛物线的解析式为y=﹣1(x﹣1)1﹣1.故选:C.【点睛】本题考查了抛物线的平移变换规律,旋转变换规律,掌握抛物线的平移和旋转变换规律是解题的关键.3、D【分析】把抛物线解析式配方后可以得到平移公式,从而可得平移方法.【详解】解:由题意得平移公式为:,∴平移方法为向右平移1个单位,再向下平移2个单位.故选D.【点睛】本题考查二次函数图象的平移,经过对前后解析式的比较得到平移坐标公式是解题关键.4、D【分析】可分别根据线段垂直平分线的性质进行思考,首先满足到A点、B点的距离相等,然后思考满足到C点、B点的距离相等,都分别在各自线段的垂直平分线上,于是答案可得.【详解】解:如图:∵OA=OB,∴O在线段AB的垂直平分线上,∵OB=OC,∴O在线段BC的垂直平分线上,∵OA=OC,∴O在线段AC的垂直平分线上,又三个交点相交于一点,∴与三角形三个顶点距离相等的点,是这个三角形的三边的垂直平分线的交点.故选:D.【点睛】此题主要考查垂直平分线的性质,解题的关键是熟知线段垂直平分线上的点到线段两个端点距离相等.5、C【分析】①x=1=−,即b=−2a,即可求解;②当x=1时,y=a+b+c<0,即可求解;③分别判断出a,b,c的取值,即可求解;④时,函数的表达式为:y=(x+1)(x−1)=,则点A、B、D的坐标分别为:(−1,0)、(1,0)(1,−2),即可求解.【详解】其图象与x轴的交点A,B的横坐标分别为−1和1,则函数的对称轴为:x=1,①x=1=−,即b=−2a,故不符合题意;②当x=1时,y=a+b+c<0,符合题意;③由图可得开口向上,a>0,对称轴x=1,∴a,b异号,b<0,图像与y轴交于负半轴,c<0∴>0,不符合题意;④时,函数的表达式为:y=(x+1)(x−1)=,则点A、B、D的坐标分别为:(−1,0)、(1,0)(1,−2),AB2=(-1-1)2+02=16,AD2=(-1-1)2+(0-2)2=8,BD2=(1-1)2+(0-2)2=8,故△ABD是等腰直角三角形符合题意;故选:C.【点睛】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.6、D【分析】根据反比例函数的比例系数的几何意义:反比例函数图象上一点向x轴,y轴作垂线与坐标轴围成的矩形面积等于|k|解答即可.【详解】∵点P在反比例函数(x<0)的图象上,∴S矩形OAPB=|-4|=4,故选:D.【点睛】本题主要考查反比例函数的比例系数的几何意义,掌握反比例函数上一点向x轴,y轴作垂线与坐标轴围成的矩形面积等于|k|是关键.7、A【解析】∵DE∥BC,EF∥AB,∴,,∴,∴,∴,即.故选A.点睛:若,则,.8、D【分析】由主视图和左视图可得此几何体为锥体,根据俯视图是圆及圆心可判断出此几何体为圆锥.【详解】解:主视图和左视图都是三角形,此几何体为椎体,俯视图是一个圆,此几何体为圆锥.故选:D.【点睛】本题主要考查了由三视图判断几何体,由主视图和左视图可得几何体是柱体,锥体还是球体,由俯视图可确定几何体的具体形状.9、C【分析】根据轴对称图形和中心对称图形的定义进行判断即可.【详解】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、既是轴对称图形,也是中心对称图形,故此选项正确;D、是轴对称图形,不是中心对称图形,故此选项错误;故选C.【点睛】本题考查了轴对称图形和中心对称图形的定义,属于基础题型,熟知轴对称图形和中心对称图形的定义是正确判断的关键.10、A【解析】连接CB.∵∠OCD=90°,CO=CD,∴△OCD是等腰直角三角形,∴∠COB=45°.∵△OAB与△OCD是位似图形,相似比为1:2,∴2OB=OD,△OAB是等腰直角三角形.∵2OB=OD,∴点B为OD的中点,∴BC⊥OD.∵B(2,0),∴OB=2,∵△OAB是等腰直角三角形,∴∠COB=45°.∵BC⊥OD,∴△OBC是等腰直角三角形,∴BC=OB=2,∴点C的坐标为(2,2).故选A.11、A【分析】过点分别作x轴的垂线,垂足分别为,得出△为等腰直角三角形,进而求出,再逐一求出,…的值,即可得出答案.【详解】如图,过点分别作x轴的垂线,垂足分别为∵△为等腰直角三角形,斜边的中点在反比例函数的图像上∴(2,2),即∴设,则此时(4+a,a)将(4+a,a)代入得a(4+a)=4解得或(负值舍去)即同理,,…,∴故答案选择A.【点睛】本题考查的是反比例函数的图像与性质以及反比例函数上点的特征,难度系数较大,解题关键是根据点在函数图像上求出y的值.12、B【分析】首先根据二次函数解析式确定抛物线的对称轴为x=2,再根据抛物线的增减性以及对称性可得y1,y2的大小关系.【详解】解:∵二次函数y=x2﹣4x+5=(x﹣2)2+1,∴对称轴为x=2,∵a>0,∴x>2时,y随x增大而增大,点(﹣4,y1)关于抛物线的对称轴x=2对称的点是(8,y1),8>4,∴y1>y2,故选:B.【点睛】本题主要考查的是二次函数的增减性,从对称轴分开,二次函数左右两边的增减性不相同结合题意即可解出此题.二、填空题(每题4分,共24分)13、x1=2,x2=1【分析】根据抛物线y=x2﹣1x+m与直线y=kx﹣13(k≠0)交于点(2,﹣9),可以求得m和k的值,然后代入题目中的方程,即可解答本题.【详解】解:∵抛物线y=x2﹣1x+m与直线y=kx﹣13(k≠0)交于点(2,﹣9),∴﹣9=22﹣1×2+m,﹣9=2k﹣13,解得,m=﹣5,k=2,∴抛物线为y=x2﹣1x﹣5,直线y=2x﹣13,∴所求方程为x2﹣1x﹣5=2(x﹣1)﹣11,解得,x1=2,x2=1,故答案为:x1=2,x2=1.【点睛】本题主要考查的是二次函数与一次函数的交点问题,交点既满足二次函数也满足一次函数,带入即可求解.14、.【分析】可利用勾股定理及所给的比值得到所求的线段长.【详解】如图,∵AB=10米,tanA==.∴设BC=x,AC=2x,由勾股定理得,AB2=AC2+BC2,即100=x2+4x2,解得x=2,∴AC=4米.故答案为4.【点睛】本题主要考查了解直角三角形的应用-坡度坡角问题,能从实际问题中整理出直角三角形是解答本题的关键.15、2【分析】由根与系数的关系,根据两根之和为计算即可.【详解】∵关于的方程有一个根,
∴
解得:;
故答案为:.【点睛】本题考查了一元二次方程根与系数的关系,熟记根与系数的关系的结构是解题的关键.16、.【解析】试题分析:x(x-1)=0解得:=0,=1.考点:解一元二次方程.17、1750【分析】设王霞出发时步行速度为a米/分钟,爸爸骑车速度为b米/分钟,根据爸爸追上王霞的时间可以算出两者速度关系,然后利用学校和单位之间距离4750建立方程求出a,即可算出家到学校的距离.【详解】设王霞出发时步行速度为a米/分钟,爸爸骑车速度为b米/分钟,由图像可知9分钟时爸爸追上王霞,则,整理得由图像可知24分钟时,爸爸到达单位,∵最后王霞比爸爸早10分钟到达目的地∴王霞在第14分钟到达学校,即拿到作业后用时14-9=5分钟到达学校爸爸骑车用时24-9=15分钟到达单位,单位与学校相距4750米,∴将代入可得,解得∴王霞的家与学校的距离为米故答案为:1750.【点睛】本题考查函数图像信息问题,解题的关键是读懂图像中数据的含义,求出王霞的速度.18、1【分析】根据铅球落地时,高度y=0,把实际问题可理解为当y=0时,求x的值即可.【详解】解:在中,当y=0时,整理得:x2-8x-20=0,(x-1)(x+2)=0,解得x1=1,x2=-2(舍去),即该运动员此次掷铅球的成绩是1m.故答案为:1.【点睛】本题考查了二次函数的应用中函数式中自变量与函数表达的实际意义,需要结合题意,取函数或自变量的特殊值列方程求解是解题关键.三、解答题(共78分)19、(1)1,1,0(2)作图见解析(3)必过点.(答案不唯一)(4)【分析】(1)根据待定系数法求出的值,再代入和,即可求出m、n的值;(2)根据描点法画出函数的图象即可;(3)根据(2)中函数的图象写出其中一个性质即可;(4)利用图象法,可得函数与有三个不同的交点,根据二次函数的性质求解即可.【详解】(1)将代入中解得∴当时,当时,;(2)如图所示;(3)必过点;(4)设直线,由(1)得∵方程有三个不同的解∴函数与有三个不同的交点根据图象即可知,当方程有三个不同的解时,故.【点睛】本题考查了函数的图象问题,掌握待定系数法、描点法、图象法、二次函数的性质是解题的关键.20、(1)12;(2);(3).【分析】(1)如图1中,过点作,交延长线于点,通过构造直角三角形,求出BD利用三角形面积公式求解即可.(2)如图示,作点关于的对称点,交于点,连接,交于点,连接、、,过点作,交延长线于点,确定点P的位置,利用勾股定理与矩形的性质求出CQ的长度即为答案.(3)解图3所示,在上这一点作点关于的对称点,作点关于的对称点,连接,交于点,交于点,连接,通过轴对称性质的转化,最终确定最小值转化为SN的长.【详解】(1)如解图1所示,过点作,交延长线于点,,,,交延长线于点,为等腰直角三角形,且,,在中,,,即,,,解得:,,.(2)如解图2所示,作点关于的对称点,交于点,连接,交于点,连接、、,过点作,交延长线于点,关于的对称点,交于点,,,点为上的动点,,当点处于解图2中的位置,取最小值,且最小值为的长度,点为半圆的中点,,,,,,在中,由作图知,,且,,,由作图知,四边形为矩形,,,,的最小值为.(3)如解图3所示,在上这一点作点关于的对称点,作点关于的对称点,连接,交于点,交于点,连接,点关于的对称点,点关于的对称点,连接,交于点,交于点,,,,,.,,为上的点,为上的点,当点处于解图3的位置时,的长度取最小值,最小值为的长度,,,.扇形的半径为,,在中,,的长度的最小值为.【点睛】本题主要考察了轴对称、勾股定理、圆、四边形等相关内容,理解题意,作出辅助线是做题的关键.21、(1);(2).【分析】(1)根据等腰三角形性质和三角形外角性质求出∠COD=2∠A,求出∠D=∠COD,根据切线性质求出∠OCD=90°,即可求出答案;(2)由题意的半径为2,求出OC=CD=2,根据勾股定理求出BD即可.【详解】解:(1)∵OA=OC,∴∠A=∠ACO,∴∠COD=∠A+∠ACO=2∠A,∵∠D=2∠A,∴∠D=∠COD,∵PD切⊙O于C,∴∠OCD=90°,∴∠D=∠COD=45°;(2)∵∠D=∠COD,的半径为2,∴OC=OB=CD=2,在Rt△OCD中,由勾股定理得:22+22=(2+BD)2,解得:.【点睛】本题考查切线的性质,勾股定理,等腰三角形性质,三角形的外角性质的应用,主要考查学生的推理能力,熟练掌握切线的性质,勾股定理,等腰三角形性质,三角形的外角性质是解题关键.22、渔船没有进入养殖场的危险.【解析】试题分析:点B作BM⊥AH于M,过点C作CN⊥AH于N,利用直角三角形的性质求得CK的长,若CK>4.8则没有进入养殖场的危险,否则有危险.试题解析:过点B作BM⊥AH于M,∴BM∥AF.∴∠ABM=∠BAF=30°.在△BAM中,AM=AB=5,BM=.过点C作CN⊥AH于N,交BD于K.在Rt△BCK中,∠CBK=90°-60°=30°设CK=,则BK=在Rt△ACN中,∵∠CAN=90°-45°=45°,∴AN=NC.∴AM+MN=CK+KN.又NM=BK,BM=KN.∴.解得∵5海里>4.8海里,∴渔船没有进入养殖场的危险.答:这艘渔船没有进入养殖场危险.23、(1)10%;(1)会跌破10000元/m1.【分析】(1)设11、11两月平均每月降价的百分率是x,那么11月份的房价为14000(1-x),11月份的房价为14000(1-x)1,然后根据11月份的11340元/m1即可列出方程解决问题;(1)根据(1)的结果可以计算出今年1月份商品房成交均价,然后和10000元/m1进行比较即可作出判断.【详解】(1)设11、11两月平均每月降价的百分率是x,则11月份的成交价是:14000(1-x),11月份的成交价是:14000(1-x)1,∴14000(1-x)1=11340,∴(1-x)1=0.81,∴x1=0.1=10%,x1=1.9(不合题意,舍去)答:11、11两月平均每月降价的百分率是10%;(1)会跌破10000元/m1.如果按此降价的百分率继续回落,估计今年1月份该市的商品房成交均价为:11340(1-x)1=11340×0.81=9184.5<10000,由此可知今年1月份该市的商品房成交均价会跌破10000元/m1.【点睛】此题考查了一元二次方程的应用,和实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年矿产资源开发与合作合同
- 兼职文案创意撰写合同
- 交通运输工具融资租赁合同
- 环保工程桩基机械施工合同
- 智能电网通信网络升级合同
- 员工餐费补贴发放细则
- 餐厅浮雕施工协议
- 环保设施电工维护聘用协议
- 临时搭建物拆除合同
- 学校出租车租赁合同协议书
- 舞蹈演出编导排练合同模板
- 沪科版2024-2025学年七年级数学上册计算专题训练专题18期末复习-四大必考题型总结(学生版+解析)
- 路灯安装工程项目实施重点、难点和解决方案
- 2024年产品技术秘密保护协议版B版
- 社会学概论-第一次形成性考核-国开(SC)-参考资料
- 南京审计大学《计量经济学》2021-2022学年第一学期期末试卷
- 2024-2025学年广东省深圳市罗湖区翠园中学九年级(上)期中语文试卷
- 新媒体营销对企业品牌传播的影响与对策8700字【论文】
- 期末测试-2024-2025学年语文六年级上册统编版
- 建筑施工安全知识培训
- 山东省2024年冬季普通高中学业水平合格考试语文仿真模拟卷01(考试版)
评论
0/150
提交评论