版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年江苏省镇江市江南中学九年级数学第一学期期末预测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,菱形ABCD中,∠A=60°,边AB=8,E为边DA的中点,P为边CD上的一点,连接PE、PB,当PE=EB时,线段PE的长为()A.4 B.8 C.4 D.42.某厂2017年产值3500万元,2019年增加到5300万元.设平均每年增长率为,则下面所列方程正确的是()A. B.C. D.3.两个相似三角形的对应边分别是15cm和23cm,它们的周长相差40cm,则这两个三角形的周长分别是()A.45cm,85cm B.60cm,100cm C.75cm,115cm D.85cm,125cm4.下列四个点,在反比例函数y=图象上的是(
)A.(1,-6) B.(2,4) C.(3,-2) D.(-6,-1)5.如图,抛物线和直线,当时,的取值范围是()A. B.或 C.或 D.6.已知2x=3y(y≠0),则下面结论成立的是()A. B.C. D.7.如图,△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ADC的度数是()A.80° B.160° C.100° D.40°8.下列图形中,是轴对称图形但不是中心对称图形的是()A. B.C. D.9.下列各式计算正确的是()A.2x•3x=6xB.3x-2x=xC.(2x)2=4xD.6x÷2x=3x10.二次函数(是常数,)的自变量与函数值的部分对应值如下表:…012………且当时,与其对应的函数值.有下列结论:①;②和3是关于的方程的两个根;③.其中,正确结论的个数是()A.0 B.1 C.2 D.311.用配方法解一元二次方程x2﹣2x=5的过程中,配方正确的是()A.(x+1)2=6 B.(x﹣1)2=6 C.(x+2)2=9 D.(x﹣2)2=912.下列方程中是关于x的一元二次方程的是()A.x2+=0 B.y2﹣3x+2=0C.x2=5x D.x2﹣4=(x+1)2二、填空题(每题4分,共24分)13.如图,将矩形绕点旋转至矩形位置,此时的中点恰好与点重合,交于点.若,则的面积为__________.14.为庆祝中华人民共和国成立70周年,某校开展以“我和我亲爱的祖国”为主题快闪活动,他们准备从报名参加的3男2女共5名同学中,随机选出2名同学进行领唱,选出的这2名同学刚好是一男一女的概率是:_________.15.如图,四边形内接于,若,_______.16.如图,AB为⊙O的直径,C,D是⊙O上两点,若∠ABC=50°,则∠D的度数为______.17.等边三角形中,,将绕的中点逆时针旋转,得到,其中点的运动路径为,则图中阴影部分的面积为__________.18.如图,在边长为2的菱形ABCD中,,点E、F分别在边AB、BC上.将BEF沿着直线EF翻折,点B恰好与边AD的中点G重合,则BE的长等于________.三、解答题(共78分)19.(8分)如图l,在中,,,于点,是线段上的点(与,不重合),,,连结,,,.(1)求证:;(2)如图2,若将绕点旋转,使边在的内部,延长交于点,交于点.①求证:;②当为等腰直角三角形,且时,请求出的值.20.(8分)如图,抛物线经过点,请解答下列问题:求抛物线的解析式;抛物线的顶点为点,对称轴与轴交于点,连接,求的长.点在抛物线的对称轴上运动,是否存在点,使的面积为,如果存在,直接写出点的坐标;如果不存在,请说明理由.21.(8分)某品牌太阳能热水器的实物图和横断面示意图如图所示.已知真空集热管DE与支架CB所在直线相交于点O,且;支架BC与水平线AD垂直.,,,另一支架AB与水平线夹角,求OB的长度(结果精确到1cm;温馨提示:,,)22.(10分)为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为D、C、B、A四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问题:(1)a=,b=,c=;(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为度;(3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.23.(10分)某服装超市购进单价为30元的童装若干件,物价部门规定其销售单价不低于每件30元,不高于每件60元.销售一段时间后发现:当销售单价为60元时,平均每月销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件.同时,在销售过程中,每月还要支付其他费用450元.设销售单价为x元,平均月销售量为y件.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)当销售单价为多少元时,销售这种童装每月可获利1800元?(3)当销售单价为多少元时,销售这种童装每月获得利润最大?最大利润是多少?24.(10分)问题背景如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形.类比探究如图2,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合)(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明.(2)△DEF是否为正三角形?请说明理由.(3)进一步探究发现,△ABD的三边存在一定的等量关系,设BD=a,AD=b,AB=c,请探索a,b,c满足的等量关系.25.(12分)如图,在直角三角形ABC中,∠C=90°,点D是AC边上一点,过点D作DE⊥BD,交AB于点E,若BD=10,tan∠ABD=,cos∠DBC=,求DC和AB的长.26.如图,在阳光下的电线杆AB落在地上的影子BD长3米,落在墙上的影子CD的高为2米,同一时刻,竖起一根1米高的竹竿MN,其影长MF为1.5米,求电线杆的高度.
参考答案一、选择题(每题4分,共48分)1、D【分析】由菱形的性质可得AB=AD=8,且∠A=60°,可证△ABD是等边三角形,根据等边三角形中三线合一,求得BE⊥AD,再利用勾股定理求得EB的长,根据PE=EB,即可求解.【详解】解:如上图,连接BD∵四边形ABCD是菱形,
∴AB=AD=8,且∠A=60°,
∴△ABD是等边三角形,∵点E是DA的中点,AD=8
∴BE⊥AD,且∠A=60°,AE=
∴在Rt△ABE中,利用勾股定理得:∵PE=EB∴PE=EB=4,
故选:D.【点睛】本题考查了菱形的性质,等边三角形判定和性质,直角三角形的性质,灵活运用这些性质进行推理是本题的关键.2、D【分析】由题意设每年的增长率为x,那么第一年的产值为3500(1+x)万元,第二年的产值3500(1+x)(1+x)万元,然后根据今年上升到5300万元即可列出方程.【详解】解:设每年的增长率为x,依题意得3500(1+x)(1+x)=5300,即.故选:D.【点睛】本题考查列出解决问题的方程,解题的关键是正确理解“利润每月平均增长率为x”的含义以及找到题目中的等量关系.3、C【解析】根据相似三角形的周长的比等于相似比列出方程,解方程即可.【详解】设小三角形的周长为xcm,则大三角形的周长为(x+40)cm,
由题意得,,
解得,x=75,
则x+40=115,故选C.4、D【解析】由可得xy=6,故选D.5、B【分析】联立两函数解析式求出交点坐标,再根据函数图象写出抛物线在直线上方部分的的取值范围即可.【详解】解:联立,解得,,两函数图象交点坐标为,,由图可知,时的取值范围是或.故选:B.【点睛】本题考查了二次函数与不等式,此类题目利用数形结合的思想求解更加简便.6、A【解析】试题解析:A、两边都除以2y,得,故A符合题意;B、两边除以不同的整式,故B不符合题意;C、两边都除以2y,得,故C不符合题意;D、两边除以不同的整式,故D不符合题意;故选A.7、C【分析】根据圆周角定理以及圆内接四边形的性质即可解决问题;【详解】解:∵∠AOC=2∠B,∠AOC=160°,
∴∠B=80°,
∵∠ADC+∠B=180°,
∴∠ADC=100°,
故选:C.【点睛】本题考查圆周角定理、圆内接四边形的性质等知识,解题的关键是熟练掌握基本知识.8、D【解析】根据轴对称图形与中心对称图形的概念,对各选项分析判断即可得解.【详解】A、是轴对称图形,也是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、是轴对称图形,也是中心对称图形,故本选项错误;D、是轴对称图形,但不是中心对称图形,故本选项正确.故选:D.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.9、B【解析】计算得到结果,即可作出判断【详解】A、原式=6x2,不符合题意;B、原式=x,符合题意;C、原式=4x2,不符合题意;D、原式=3,不符合题意,故选B【点睛】考查整式的混合运算,熟练掌握运算法则是解本题的关键.10、C【分析】首先确定对称轴,然后根据二次函数的图像和性质逐一进行分析即可求解.【详解】∵由表格可知当x=0和x=1时的函数值相等都为-2∴抛物线的对称轴是:x=-=;∴a、b异号,且b=-a;∵当x=0时y=c=-2∴c∴abc0,故①正确;∵根据抛物线的对称性可得当x=-2和x=3时的函数值相等都为t∴和3是关于的方程的两个根;故②正确;∵b=-a,c=-2∴二次函数解析式:∵当时,与其对应的函数值.∴,∴a;∵当x=-1和x=2时的函数值分别为m和n,∴m=n=2a-2,∴m+n=4a-4;故③错误故选C.【点睛】本题考查了二次函数的综合题型,主要利用了二次函数图象与系数的关系,二次函数的对称性,二次函数与一元二次方程等知识点,要会利用数形结合的思想,根据给定自变量与函数值的值结合二次函数的性质逐条分析给定的结论是关键.11、B【分析】在方程左右两边同时加上一次项系数一半的平方即可.【详解】解:方程两边同时加上一次项系数一半的平方,得到x2﹣2x+1=5+1,即(x﹣1)2=6,故选:B.【点睛】本题考查了配方法,解题的关键是注意:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.12、C【解析】依据一元二次方程的定义解答即可.【详解】A.x20是分式方程,故错误;B.y2﹣3x+2=0是二元二次方程,故错误;C.x2=5x是一元二次方程,故正确;D.x2﹣4=(x+1)2是一元一次方程,故错误.故选:C.【点睛】本题考查了一元二次方程的定义,掌握一元二次方程的定义是解答本题的关键.二、填空题(每题4分,共24分)13、【分析】根据旋转后AC的中点恰好与D点重合,利用旋转的性质得到直角三角形ACD中,∠ACD=30°,再由旋转后矩形与已知矩形全等及矩形的性质得到∠DAE为30°,进而得到∠EAC=∠ECA,利用等角对等边得到AE=CE,设AE=CE=x,表示出AD与DE,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出EC的长,即可求出三角形AEC面积.【详解】∵旋转后AC的中点恰好与D点重合,
即AD=AC′=AC,
∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°,
∴∠DAD′=60°,
∴∠DAE=30°,
∴∠EAC=∠ACD=30°,
∴AE=CE,
在Rt△ADE中,设AE=EC=x,∵AB=CD=6
∴DE=DC-EC=AB-EC=6-x,AD=CD×tan∠ACD=×6=2,
根据勾股定理得:x2=(6-x)2+(2)2,
解得:x=4,
∴EC=4,
则S△AEC=EC•AD=4故答案为:4【点睛】此题考查了旋转的性质,含30度直角三角形的性质,勾股定理,以及等腰三角形的性质,熟练掌握性质及定理是解本题的关键.14、【分析】先画出树状图求出所有可能出现的结果数,再找出选出的2名同学刚好是一男一女的结果数,然后利用概率公式求解即可.【详解】解:设报名的3名男生分别为A、B、C,2名女生分别为M、N,则所有可能出现的结果如图所示:由图可知,共有20种等可能的结果,其中选出的2名同学刚好是一男一女的结果有12种,所以选出的2名同学刚好是一男一女的概率=.故答案为:.【点睛】本题考查了求两次事件的概率,属于常考题型,熟练掌握画树状图或列表的方法是解题的关键.15、【分析】根据圆内接四边形的对角互补,即可求得答案.【详解】∵四边形ABCD是⊙O的内接四边形,
∴.
故答案为:.【点睛】主要考查圆内接四边形的性质及圆周角定理.16、40°.【解析】根据直径所对的圆心角是直角,然后根据直角三角形的两锐角互余求得∠A的度数,最后根据同弧所对的圆周角相等即可求解.【详解】∵AB是圆的直径,∴∠ACB=90°,∴∠A=90°-∠ABC=90°-50°=40°.∴∠D=∠A=40°.故答案为:40°.【点睛】本题考查了圆周角定理,直径所对的圆周角是直角以及同弧所对的圆周角相等,理解定理是关键.17、【分析】先利用勾股定理求出OB,再根据,计算即可.【详解】解:在等边三角形中,O为的中点,∴OB⊥OC,,∴∠BOC=90°∴∵将绕的中点逆时针旋转,得到∴∴三点共线∴故答案为:【点睛】本题考查旋转变换、扇形面积公式,三角形的面积公式,以及勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18、【分析】如图,作GH⊥BA交BA的延长线于H,EF交BG于O.利用勾股定理求出MG,由此即可解决问题.【详解】过点G作GM⊥AB交BA延长线于点M,则∠AMG=90°,∵G为AD的中点,∴AG=AD==1,∵四边形ABCD是菱形,∴AB//CD,∴∠MAG=∠D=60°,∴∠AGM=30°,∴AM=AG=,∴MG=,设BE=x,则AE=2-x,∵EG=BE,∴EG=x,在Rt△EGM中,EG2=EM2+MG2,∴x2=(2-x+)2+,∴x=,故答案为.【点睛】本题考查了菱形的性质、轴对称的性质等,正确添加辅助线构造直角三角形利用勾股定理进行解答是关键.三、解答题(共78分)19、(1)见解析;(2)①见解析;②【分析】(1)通过证明△EAB≌△FAB,即可得到BE=BF;
(2)①首先证明△AEB≌△AFC,由相似三角形的性质可得:∠EBA=∠FCA,进而可证明△AGC∽△KGB;②根据题意,可分类讨论求值即可.【详解】(1)∵AB=AC,AO⊥BC,
∴∠OAC=∠OAB=45°,
∴∠EAB=∠EAF-∠BAF=45°,
∴∠EAB=∠BAF=45°,
在△EAB和△FAB中,,∴△EAB≌△FAB(SAS),
∴BE=BF;
(2)①∵∠BAC=90°,∠EAF=90°,
∴∠EAB+∠BAF=∠BAF+∠FAC=90°,
∴∠EAB=∠FAC,
在△AEB和△AFC中,,∴△AEB≌△AFC(SAS),
∴∠EBA=∠FCA,
又∵∠KGB=∠AGC,
∴△AGC∽△KGB;
②当∠EBF=90°时,∵EF=BF,
∴∠FEB=∠EBF=90°(不符合题意),当∠BEF=90°,且EF=BF时,∴∠FEB=∠EBF=90°(不符合题意),当∠EFB=90°,且EF=BF时,如下图,∴∠FEB=∠FBE=45°,∵,,∴∠AFE=∠AEF=45°,∴∠AEB=∠AEF+∠FEB=45°+45°=90°,不妨设,则BF=EF=,BE=,在Rt△ABE中,∠AEB=90°,,BE,∴,∴,综上,.【点睛】本题考查了全等三角形的判定和性质、相似三角形的判定和性质、等腰直角三角形的性质,题目的综合性很强,最后一问要注意分类讨论,以防遗漏.20、(1)y=-x2+2x+3;(2)2;(3)存在点F,点F(1,2)或(1,-2)【分析】(1)利用待定系数法即可求出结论;(2)先求出顶点D的坐标,然后分别求出BE和DE的长,利用勾股定理即可求出结论;(3)先求出BC的长,然后根据三角形的面积公式即可求出点F的纵坐标,从而求出结论.【详解】解:(1)∵抛物线y=ax2+2x+c经过点A(0,3),B(-1,0),∴将A(0,3),B(-1,0)代入得:,解得:则抛物线解析式为y=-x2+2x+3;(2)y=-x2+2x+3=-(x-1)2+4由D为抛物线顶点,得到D(1,4),∵
对称轴与
x
轴交于点E
,∴
DE=4,OE=1
,∵
B(﹣1,0),∴
BO=1,∴
BE=2,在
RtBED
中,根据勾股定理得:
BD==2(3)抛物线的对称轴为直线x=1由对称性可得:点C的坐标为(3,0)∴BC=3-(-1)=4∵的面积为,∴BC·=4解得:=2或-2∴点F的坐标为(1,2)或(1,-2)即存在点F,点F(1,2)或(1,-2)【点睛】此题考查的是二次函数的综合大题,掌握利用待定系数法求二次函数解析式、勾股定理和三角形的面积公式是解决此题的关键.21、.【分析】设,根据含30度角的直角三角形的性质以及锐角三角函数的定义即可求出答案.【详解】设,∴,∵,∴,∴,∵,∴,解得:,∴.8≈19cm【点睛】本题考查解直角三角形,熟练运用锐角三角函数的定义是解题关键.22、(1)2、45、20;(2)72;(3)【解析】分析:(1)根据A等次人数及其百分比求得总人数,总人数乘以D等次百分比可得a的值,再用B、C等次人数除以总人数可得b、c的值;(2)用360°乘以C等次百分比可得;(3)画出树状图,由概率公式即可得出答案.详解:(1)本次调查的总人数为12÷30%=40人,∴a=40×5%=2,b=×100=45,c=×100=20,(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为360°×20%=72°,(3)画树状图,如图所示:共有12个可能的结果,选中的两名同学恰好是甲、乙的结果有2个,故P(选中的两名同学恰好是甲、乙)=.点睛:此题主要考查了列表法与树状图法,以及扇形统计图、条形统计图的应用,要熟练掌握.23、(1)y=﹣2x+200(30≤x≤60);(2)当销售单价为55元时,销售这种童装每月可获利1800元;(3)当销售单价为60元时,销售这种童装每月获得利润最大,最大利润是1950元.【分析】(1)当销售单价为60元时,平均每月销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件.从而用60减去x,再除以10,就是降价几个10元,再乘以20,再把80加上就是平均月销售量;(2)利用(售价﹣进价)乘以平均月销售量,再减去每月需要支付的其他费用,让其等于1800,解方程即可;(3)由(2)方程式左边,可得每月获得的利润函数,写成顶点式,再结合函数的自变量取值范围,可求得取最大利润时的x值及最大利润.【详解】解:(1)由题意得:y=80+20×∴函数的关系式为:y=﹣2x+200(30≤x≤60)(2)由题意得:(x﹣30)(﹣2x+200)﹣450=1800解得x1=55,x2=75(不符合题意,舍去)答:当销售单价为55元时,销售这种童装每月可获利1800元.(3)设每月获得的利润为w元,由题意得:w=(x﹣30)(﹣2x+200)﹣450=﹣2(x﹣65)2+2000∵﹣2<0∴当x≤65时,w随x的增大而增大∵30≤x≤60∴当x=60时,w最大=﹣2(60﹣65)2+2000=1950答:当销售单价为60元时,销售这种童装每月获得利润最大,最大利润是1950元.【点睛】本题综合考查了一次函数、一元二次方程、二次函数在实际问题中的应用,具有较强的综合性.24、(1)见解析;(1)△DEF是正三角形;理由见解析;(3)c1=a1+ab+b1【解析】试题分析:(1)由正三角形的性质得∠CAB=∠ABC=∠BCA=60°,AB=BC,证出∠ABD=∠BCE,由ASA证明△ABD≌△BCE即可;、(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 河北中考英语模拟试卷单选题100道及答案
- 二零二五年度股东持股权纠纷调解协议3篇
- 二零二五年道路照明设施安装与售后服务合同2篇
- 二零二五年度顶名支付式房产买卖合同模板3篇
- 二零二五年度高空蜘蛛人特种作业安全责任合同书2篇
- 2023-2024年项目部治理人员安全培训考试题附完整答案【网校专用】
- 2023-2024年企业主要负责人安全培训考试题附参考答案【A卷】
- 2023-2024年项目部安全管理人员安全培训考试题含答案【B卷】
- 2024年项目安全培训考试题附答案(综合题)
- 2024年项目管理人员安全培训考试题带答案(综合题)
- 人大提案格式范文
- 《那一刻我长大了》五年级语文下册作文12篇
- 南充化工码头管网施工方案(初稿)
- 2023年消防接警员岗位理论知识考试参考题库(浓缩500题)
- GB/T 30285-2013信息安全技术灾难恢复中心建设与运维管理规范
- 鲁滨逊漂流记阅读任务单
- 第一章 运营管理概论1
- 主体结构验收汇报材料T图文并茂
- 管理学原理(南大马工程)
- 过一个有意义的寒假课件
- 施工现场装配式集装箱活动板房验收表
评论
0/150
提交评论