2023-2024学年江苏省泰州市泰州中学数学九上期末调研试题含解析_第1页
2023-2024学年江苏省泰州市泰州中学数学九上期末调研试题含解析_第2页
2023-2024学年江苏省泰州市泰州中学数学九上期末调研试题含解析_第3页
2023-2024学年江苏省泰州市泰州中学数学九上期末调研试题含解析_第4页
2023-2024学年江苏省泰州市泰州中学数学九上期末调研试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年江苏省泰州市泰州中学数学九上期末调研试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,矩形ABCD中,BC=4,CD=2,O为AD的中点,以AD为直径的弧DE与BC相切于点E,连接BD,则阴影部分的面积为()A.π B. C.π+2 D.+42.若关于的一元二次方程的一个根是,则的值是()A.2011 B.2015 C.2019 D.20203.二次函数的图象如右图所示,若,,则()A., B., C., D.,4.将抛物线向上平移1个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为()A. B. C. D.5.如图,在Rt△ABC中,∠C=90°,点P是边AC上一点,过点P作PQ∥AB交BC于点Q,D为线段PQ的中点,BD平分∠ABC,以下四个结论①△BQD是等腰三角形;②BQ=DP;③PA=QP;④=(1+)2;其中正确的结论的个数()A.1个 B.2个 C.3个 D.4个6.已知如图:为估计池塘的宽度,在池塘的一侧取一点,再分别取、的中点、,测得的长度为米,则池塘的宽的长为()A.米 B.米 C.米 D.米7.如图,在一张矩形纸片中,对角线,点分别是和的中点,现将这张纸片折叠,使点落在上的点处,折痕为,若的延长线恰好经过点,则点到对角线的距离为().A. B. C. D.8.如图,直线,等腰的直角顶点在上,顶点在上,若,则()A.31° B.45° C.30° D.59°9.一元二次方程的二次项系数、一次项系数分别是A.3, B.3,1 C.,1 D.3,610.如图,点是上的点,,则是()

A. B. C. D.二、填空题(每小题3分,共24分)11.二次函数y=ax2+4ax+c的最大值为4,且图象过点(-3,0),则该二次函数的解析式为____________.12.从一副没有“大小王”的扑克牌中随机抽取一张,点数为“”的概率是________.13.如图,甲、乙两楼之间的距离为30米,从甲楼测得乙楼顶仰角为α=30°,观测乙楼的底部俯角为β=45°,乙楼的高h=_____米(结果保留整数≈1.7,≈1.4).14.如图,,,与交于点,则是相似三角形共有__________对.15.计算:____________16.如图,矩形中,,点在边上,且,的延长线与的延长线相交于点,若,则______.17.如图,矩形中,,,是边上的一点,且,点在矩形所在的平面中,且,则的最大值是_________.18.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表,x6.176.186.196.20y﹣0.03﹣0.010.020.04则方程ax2+bx+c=0的一个解的范围是_____.三、解答题(共66分)19.(10分)定义:如图1,点P为∠AOB平分线上一点,∠MPN的两边分别与射线OA,OB交于M,N两点,若∠MPN绕点P旋转时始终满足OM•ON=OP2,则称∠MPN是∠AOB的“相关角”.(1)如图1,已知∠AOB=60°,点P为∠AOB平分线上一点,∠MPN的两边分别与射线OA,OB交于M,N两点,且∠MPN=150°.求证:∠MPN是∠AOB的“相关角”;(2)如图2,已知∠AOB=α(0°α90°),OP=3,若∠MPN是∠AOB的“相关角”,连结MN,用含α的式子分别表示∠MPN的度数和△MON的面积;(3)如图3,C是函数(x0)图象上的一个动点,过点C的直线CD分别交x轴和y轴于点A,B两点,且满足BC=3CA,∠AOB的“相关角”为∠APB,请直接写出OP的长及相应点P的坐标.20.(6分)如图,抛物线(a≠0)经过A(-1,0),B(2,0)两点,与y轴交于点C.(1)求抛物线的解析式及顶点D的坐标;(2)点P在抛物线的对称轴上,当△ACP的周长最小时,求出点P的坐标;(3)点N在抛物线上,点M在抛物线的对称轴上,是否存在以点N为直角顶点的Rt△DNM与Rt△BOC相似,若存在,请求出所有符合条件的点N的坐标;若不存在,请说明理由.21.(6分)⊙O中,直径AB和弦CD相交于点E,已知AE=1cm,EB=5cm,且,求CD的长.22.(8分)已知方程是关于的一元二次方程.(1)求证:方程总有两个实数根;(2)若方程的两个根之和等于两根之积,求的值.23.(8分)如图,点,在反比例函数的图象上,作轴于点.⑴求反比例函数的表达式;⑵若的面积为,求点的坐标.24.(8分)阅读材料,解答问题:观察下列方程:①;②;③;…;(1)按此规律写出关于x的第4个方程为,第n个方程为;(2)直接写出第n个方程的解,并检验此解是否正确.25.(10分)同圆的内接正三角形与外切正三角形的周长比是_____.26.(10分)(1)计算:tan31°sin61°+cos231°-tan45°(2)解方程:x2﹣2x﹣1=1.

参考答案一、选择题(每小题3分,共30分)1、A【分析】连接OE交BD于F,如图,利用切线的性质得到OE⊥BC,再证明四边形ODCE和四边形ABEO都是正方形得到BE=2,∠DOE=∠BEO=90°,易得△ODF≌△EBF,所以S△ODF=S△EBF,然后根据扇形的面积公式,利用阴影部分的面积=S扇形EOD计算即可.【详解】连接OE交BD于F,如图,∵以AD为直径的半圆O与BC相切于点E,∴OE⊥BC.∵四边形ABCD为矩形,OA=OD=2,而CD=2,∴四边形ODCE和四边形ABEO都是正方形,∴BE=2,∠DOE=∠BEO=90°.∵∠BFE=∠DFO,OD=BE,∴△ODF≌△EBF(AAS),∴S△ODF=S△EBF,∴阴影部分的面积=S扇形EOD.故选:A.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了矩形的性质和扇形面积公式.2、C【分析】根据方程解的定义,求出a-b,利用作图代入的思想即可解决问题.【详解】∵关于x的一元二次方程的解是x=−1,∴a−b+4=0,∴a−b=-4,∴2015−(a−b)=2215−(-4)=2019.故选C.【点睛】此题考查一元二次方程的解,解题关键在于掌握运算法则.3、A【分析】由于当x=2.5时,,再根据对称轴得出b=-2a,即可得出5a+4c>0,因此可以判断M的符号;由于当x=1时,y=a+b+c>0,因此可以判断N的符号;【详解】解:∵当x=2.5时,y=,∴25a+10b+4c>0,,∴b=-2a,

∴25a-20a+4c>0,即5a+4c>0,

∴M>0,

∵当x=1时,y=a+b+c>0,

∴N>0,

故选:A.【点睛】此题主要考查了二次函数图象与系数的关系,解题的关键是注意数形结合思想的应用.4、B【分析】根据函数图象向上平移加,向右平移减,可得函数解析式.【详解】解:将抛物线向上平移1个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为:.故选:B.【点睛】本题考查了二次函数图象与几何变换,函数图象的平移规律是:左加右减,上加下减.5、C【分析】利用平行线的性质角、平分线的定义、相似三角形的判定和性质一一判断即可.【详解】解:∵PQ∥AB,∴∠ABD=∠BDQ,又∠ABD=∠QBD,∴∠QBD=∠BDQ,∴QB=QD,∴△BQD是等腰三角形,故①正确,∵QD=DF,∴BQ=PD,故②正确,∵PQ∥AB,∴=,∵AC与BC不相等,∴BQ与PA不一定相等,故③错误,∵∠PCQ=90°,QD=PD,∴CD=QD=DP,∵△ABC∽△PQC,∴=()2=()2=(1+)2,故④正确,故选:C.【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.6、C【分析】根据三角形中位线定理可得DE=BC,代入数据可得答案.【详解】解:∵线段AB,AC的中点为D,E,

∴DE=BC,

∵DE=20米,

∴BC=40米,

故选:C.【点睛】此题主要考查了三角形中位线定理,关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半.7、B【分析】设DH与AC交于点M,易得EG为△CDH的中位线,所以DG=HG,然后证明△ADG≌△AHG,可得AD=AH,∠DAG=∠HAG,可推出∠BAH=∠HAG=∠DAG=30°,然后设BH=a,则BC=AD=AH=2a,利用勾股定理建立方程可求出a,然后在Rt△AGM中,求出GM,AG,再求斜边AM上的高即为G到AC的距离.【详解】如图,设DH与AC交于点M,过G作GN⊥AC于N,∵E、F分别是CD和AB的中点,∴EF∥BC∴EG为△CDH的中位线∴DG=HG由折叠的性质可知∠AGH=∠B=90°∴∠AGD=∠AGH=90°在△ADG和△AHG中,∵DG=HG,∠AGD=∠AGH,AG=AG∴△ADG≌△AHG(SAS)∴AD=AH,AG=AB,∠DAG=∠HAG由折叠的性质可知∠HAG=∠BAH,∴∠BAH=∠HAG=∠DAG=∠BAD=30°设BH=a,在Rt△ABH中,∠BAH=30°∴AH=2a∴BC=AD=AH=2a,AB=在Rt△ABC中,AB2+BC2=AC2即解得∴DH=2GH=2BH=,AG=AB=∵CH∥AD∴△CHM∽△ADM∴∴AM=AC=,HM=DH=∴GM=GH-HM=在Rt△AGM中,∴故选B.【点睛】本题考查了矩形的性质,折叠的性质,全等三角形与相似三角形的判定与性质,以及勾股定理的应用,解题的关键是求出∠BAH=30°,再利用勾股定理求出边长.8、A【分析】过点B作BD//l1,,再由平行线的性质即可得出结论.【详解】解:过点B作BD//l1,则∠α=∠CBD.

∵,

∴BD//,

∴∠β=∠DBA,

∵∠CBD+∠DBA=45°,

∴∠α+∠β=45°,∵∴∠α=45°-∠β=31°.

故选A.【点睛】本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键.9、A【分析】根据一元二次方程的定义解答.【详解】3x2−6x+1=0的二次项系数是3,一次项系数是−6,常数项是1.故答案选A.【点睛】本题考查的知识点是一元二次方程的一般形式,解题的关键是熟练的掌握一元二次方程的一般形式.10、A【分析】本题利用弧的度数等于所对的圆周角度数的2倍求解优弧度数,继而求解劣弧度数,最后根据弧的度数等于圆心角的度数求解本题.【详解】如下图所示:∵∠BDC=120°,∴优弧的度数为240°,∴劣弧度数为120°.∵劣弧所对的圆心角为∠BOC,∴∠BOC=120°.故选:A.【点睛】本题考查圆的相关概念,解题关键在于清楚圆心角、圆周角、弧各个概念之间的关系.二、填空题(每小题3分,共24分)11、y=-4x2-16x-12【解析】∵抛物线的对称轴为直线x==﹣2,∴抛物线的顶点坐标为(﹣2,4),又∵抛物线过点(﹣3,0),∴,解得:a=﹣4,c=﹣12,则抛物线的解析式为y=-4x2-16x-12.故答案为y=-4x2-16x-12.【点睛】本题考查用待定系数法求二次函数解析式,解此题的关键在于先根据顶点坐标与函数系数的关系,求得顶点坐标,再用待定系数法求函数解析式即可.12、【分析】让点数为6的扑克牌的张数除以没有大小王的扑克牌总张数即为所求的概率.【详解】∵没有大小王的扑克牌共52张,其中点数为6的扑克牌4张,

∴随机抽取一张点数为6的扑克,其概率是

故答案为【点睛】本题考查的是随机事件概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13、1【分析】根据正切的定义求出CD,根据等腰直角三角形的性质求出BD,结合图形计算,得到答案.【详解】解:在Rt△ACD中,tan∠CAD=,∴CD=AD•tan∠CAD=30×tan30°=10≈17,在Rt△ABD中,∠DAB=45°,∴BD=AD=30,∴h=CD+BD≈1,故答案为:1.【点睛】本题考查解直角三角形的应用,要注意利用已知线段和角通过三角关系求解.14、6【分析】图中三角形有:△AEG,△ADC,△CFG,△CBA,因为,,所以△AEG∽△ADC∽△CFG∽△CBA,有6中组合,据此可得出答案.【详解】图中三角形有:△AEG,△ADC,△CFG,△CBA,∵,,∴△AEG∽△ADC∽△CFG∽△CBA共有6个组合分别为:△AEG∽△ADC,△AEG∽△CFG,△AEG∽△CBA,△ADC∽△CFG,△ADC∽△CBA,△CFG∽△CBA故答案为6.【点睛】本题考查的是相似三角形的判定,熟练掌握相似三角形的判定方法是解题的关键.15、1【分析】根据分式混合运算的法则计算即可.【详解】解:原式====1,故答案为:1.【点睛】本题考查了分式混合运算,主要考查学生的计算能力,掌握分式混合运算的法则是解题的关键.16、【分析】设BC=EC=a,根据相似三角形得到,求出a的值,再利用tanA即可求解.【详解】设BC=EC=a,∵AB∥CD,∴△ABF∽△ECF,∴,即解得a=(-舍去)∴tanF==故答案为:.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知矩形的性质及正切的定义.17、5+.【分析】由四边形是矩形得到内接于,利用勾股定理求出直径BD的长,由确定点P在上,连接MO并延长,交于一点即为点P,此时PM最长,利用勾股定理求出OM,再加上OP即可得到PM的最大值.【详解】连接BD,∵四边形ABCD是矩形,∴∠BAD=∠BCD=90,AD=BC=8,∴BD=10,以BD的中点O为圆心5为半径作,∵,∴点P在上,连接MO并延长,交于一点即为点P,此时PM最长,且OP=5,过点O作OH⊥AD于点H,∴AH=AD=4,∵AM=2,∴MH=2,∵点O、H分别为BD、AD的中点,∴OH为△ABD的中位线,∴OH=AB=3,∴OM=,∴PM=OP+OM=5+.故答案为:5+.【点睛】此题考查矩形的性质,勾股定理,圆内接四边形的性质,确定PM的位置是重点,再分段求出OM及OP的长,即可进行计算.18、6.18<x<6.1【分析】根据表格中自变量、函数的值的变化情况,得出当y=0时,相应的自变量的取值范围即可.【详解】由表格数据可得,当x=6.18时,y=﹣0.01,当x=6.1时,y=0.02,∴当y=0时,相应的自变量x的取值范围为6.18<x<6.1,故答案为:6.18<x<6.1.【点睛】本题考查了用图象法求一元二次方程的近似根,解题的关键是找到y由正变为负时,自变量的取值即可.三、解答题(共66分)19、(1)见解析;(2);(3),P点坐标为或【分析】(1)由角平分线求出∠MOP=∠NOP=∠AOB=30°,再证出∠OMP=∠OPN,证明△MOP∽△PON,即可得出结论;(2)由∠MPN是∠AOB的“相关角”,判断出△MOP∽△PON,得出∠OMP=∠OPN,即可得出∠MPN=180°﹣α;过点M作MH⊥OB于H,由三角形的面积公式得出:S△MON=ON•MH,即可得出结论;(3)设点C(a,b),则ab=3,过点C作CH⊥OA于H;分两种情况:①当点B在y轴正半轴上时;当点A在x轴的负半轴上时,BC=3CA不可能;当点A在x轴的正半轴上时;先求出,由平行线得出△ACH∽△ABO,得出比例式:,得出OB,OA,求出OA•OB,根据∠APB是∠AOB的“相关角”,得出OP,即可得出点P的坐标;②当点B在y轴的负半轴上时;同①的方法即可得出结论.【详解】(1)证明:∵∠AOB=60°,P为∠AOB的平分线上一点,∴∠AOP=∠BOP=∠AOB=30°,∵∠MOP+∠OMP+∠MPO=180°,∴∠OMP+∠MPO=150°,∵∠MPN=150°,∴∠MPO+∠OPN=150°,∴∠OMP=∠OPN,∴△MOP∽△PON,∴,∴OP2=OM•ON,∴∠MPN是∠AOB的“相关角”;(2)解:∵∠MPN是∠AOB的“相关角”,∴OM•ON=OP2,∴,∵P为∠AOB的平分线上一点,∴∠MOP=∠NOP=α,∴△MOP∽△PON,∴∠OMP=∠OPN,∴∠MPN=∠OPN+∠OPM=∠OMP+∠OPM=180°﹣α,即∠MPN=180°﹣α;过点M作MH⊥OB于H,如图2,则S△MON=ON•MH=ON•OMsinα=OP2•sinα,∵OP=3,∴S△MON=sinα;(3)设点C(a,b),则ab=4,过点C作CH⊥OA于H;分两种情况:①当点B在y轴正半轴上时;Ⅰ、当点A在x轴的负半轴上,如图3所示:BC=3CA不可能,Ⅱ、当点A在x轴的正半轴上时,如图4所示:∵BC=3CA,∴,∵CHOB,∴△ACH∽△ABO,∴,∴,∴OB=4b,OA=a,∴OA•OB=a•4b=ab=,∵∠APB是∠AOB的“相关角”,∴OP2=OA•OB,∴,∵∠AOB=90°,OP平分∠AOB,∴点P的坐标为:;②当点B在y轴的负半轴上时,如图5所示:∵BC=3CA,∴AB=2CA,∴,∵CHOB,∴△ACH∽△ABO,∴,∴∴OB=2b,OA=a,∴OA•OB=a•2b=ab=,∵∠APB是∠AOB的“相关角”,∴OP2=OA•OB,∴,∵∠AOB=90°,OP平分∠AOB,∴点P的坐标为:;综上所述:点P的坐标为:或.【点睛】本题考查反比例函数与几何综合,掌握数形结合和分类讨论的思想是解题的关键.20、(1),D(,);(2)P(,);(3)存在.N(,)或(,)或(,)或(,).【解析】试题分析:(1)利用待定系数法求出抛物线解析式;(2)确定出当△ACP的周长最小时,点P就是BC和对称轴的交点,利用两点间的距离公式计算即可;(3)作出辅助线,利用tan∠MDN=2或,建立关于点N的横坐标的方程,求出即可.试题解析:(1)由于抛物线(a≠0)经过A(-1,0),B(2,0)两点,因此把A、B两点的坐标代入(a≠0),可得:;解方程组可得:,故抛物线的解析式为:,∵=,所以D的坐标为(,).(2)如图1,设P(,k),∵,∴C(0,-1),∵A(-1,0),B(2,0),∴A、B两点关于对称轴对称,连接CB交对称轴于点P,则△ACP的周长最小.设直线BC为y=kx+b,则:,解得:,∴直线BC为:.当x=时,=,∴P(,);(3)存在.如图2,过点作NF⊥DM,∵B(2,0),C(0,﹣1),∴OB=2,OC=1,∴tan∠OBC=,tan∠OCB==2,设点N(m,),∴FN=|m﹣|,FD=||=||,∵Rt△DNM与Rt△BOC相似,∴∠MDN=∠OBC,或∠MDN=∠OCB;①当∠MDN=∠OBC时,∴tan∠MDN==,∴,∴m=(舍)或m=或m=,∴N(,)或(,);②当∠MDN=∠OCB时,∴tan∠MDN==2,∴,∴m=(舍)或m=或m=,∴N(,)或(,);∴符合条件的点N的坐标(,)或(,)或(,)或(,).考点:二次函数综合题;相似三角形的判定与性质;分类讨论;压轴题.21、2(cm)【分析】先求出圆的半径,再通过作OP⊥CD于P,求出OP长,再根据勾股定理求出DP长,最后利用垂径定理确定CD长度.【详解】解:作OP⊥CD于P,连接OD,∴CP=PD,∵AE=1,EB=5,∴AB=6,∴OE=2,在Rt△OPE中,OP=OE•sin∠DEB=,∴PD==,∴CD=2PD=2(cm).【点睛】本题考查了垂径定理,勾股定理及直角三角形的性质,根据题意作出辅助线,构造直角三角形及构造出符合垂径定理的条件是解答此题的关键.22、(1)详见解析;(2)1.【分析】(1)根据一元二次方程根的判别式,即可得到结论;(2)由一元二次方程根与系数的关系,得,,进而得到关于m的方程,即可求解.【详解】(1)∵方程是关于的一元二次方程,∴,∵,∴方程总有两个实根;(2)设方程的两根为,,则,根据题意得:,解得:,(舍去),∴的值为1.【点睛】本题主要考查一元二次

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论