2023-2024学年安徽省亳州一中学南学校国际部数学九年级第一学期期末考试模拟试题含解析_第1页
2023-2024学年安徽省亳州一中学南学校国际部数学九年级第一学期期末考试模拟试题含解析_第2页
2023-2024学年安徽省亳州一中学南学校国际部数学九年级第一学期期末考试模拟试题含解析_第3页
2023-2024学年安徽省亳州一中学南学校国际部数学九年级第一学期期末考试模拟试题含解析_第4页
2023-2024学年安徽省亳州一中学南学校国际部数学九年级第一学期期末考试模拟试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年安徽省亳州一中学南学校国际部数学九年级第一学期期末考试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,四边形ABCD内接于,它的一个外角,分别连接AC,BD,若,则的度数为()A. B. C. D.2.如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象同时经过顶点C,D.若点C的横坐标为5,BE=3DE,则k的值为()A. B. C.3 D.53.抛物线y=ax2+bx+c(a≠0)如图所示,下列结论:①b2﹣4ac>0;②a+b+c=2;③abc<0;④a﹣b+c<0,其中正确的有()A.1个 B.2个 C.3个 D.4个4.已知关于x的分式方程无解,关于y的不等式组的整数解之和恰好为10,则符合条件的所有m的和为()A. B. C. D.5.用配方法解一元二次方程,配方后的方程是()A. B. C. D.6.抛物线向右平移4个单位长度后与抛物线重合,若(-1,3)在抛物线上,则下列点中,一定在抛物线上的是()A.(3,3) B.(3,-1) C.(-1,7) D.(-5,3)7.如图,线段AB是⊙O的直径,弦,,则等于().A. B. C. D.8.如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,m)两点,则不等式y1>y2的解集是()A.﹣3<x<2 B.x<﹣3或x>2C.﹣3<x<0或x>2 D.0<x<29.sin30°等于()A. B. C. D.10.一元二次方程的两个根为,则的值是()A.10 B.9 C.8 D.7二、填空题(每小题3分,共24分)11.圆心角为,半径为2的扇形的弧长是_______.12.如图,⊙O过正方形网格中的格点A,B,C,D,点E也为格点,连结BE交⊙O于点F,P为上的任一点,则tanP=_____.13.如图是一个圆环形黄花梨木摆件的残片,为求其外圆半径,小林在外圆上任取一点A,然后过点A作AB与残片的内圆相切于点D,作CD⊥AB交外圆于点C,测得CD=15cm,AB=60cm,则这个摆件的外圆半径是_____cm.14.将抛物线y=x2+x向下平移2个单位,所得抛物线的表达式是.15.如图,四边形ABCD是矩形,,,以点A为圆心,AB长为半径画弧,交CD于点E,交AD的延长线于点F,则图中阴影部分的面积是________.16.已知正方形ABCD的对角线长为8cm,则正方形ABCD的面积为_____cm1.17.如图,在中,,,点在边上,,.点是线段上一动点,当半径为的与的一边相切时,的长为____________.18.若是方程的一个根,则式子的值为__________.三、解答题(共66分)19.(10分)如图,是的直径,是上半圆的弦,过点作的切线交的延长线于点,过点作切线的垂线,垂足为,且与交于点,设,的度数分别是.用含的代数式表示,并直接写出的取值范围;连接与交于点,当点是的中点时,求的值.20.(6分)某商场经营一种新上市的文具,进价为元/件,试营销阶段发现:当销售单价为元/件时,每天的销售量是件;销售单价每上涨一元,每天的销售量就减少件,(1)写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大?21.(6分)如图,在平面直角坐标系xOy中,直线和抛物线W交于A,B两点,其中点A是抛物线W的顶点.当点A在直线上运动时,抛物线W随点A作平移运动.在抛物线平移的过程中,线段AB的长度保持不变.应用上面的结论,解决下列问题:在平面直角坐标系xOy中,已知直线.点A是直线上的一个动点,且点A的横坐标为.以A为顶点的抛物线与直线的另一个交点为点B.(1)当时,求抛物线的解析式和AB的长;(2)当点B到直线OA的距离达到最大时,直接写出此时点A的坐标;(3)过点A作垂直于轴的直线交直线于点C.以C为顶点的抛物线与直线的另一个交点为点D.①当AC⊥BD时,求的值;②若以A,B,C,D为顶点构成的图形是凸四边形(各个内角度数都小于180°)时,直接写出满足条件的的取值范围.22.(8分)已知:如图,在△ABC中,点D,E分别在边AB,BC上,BA•BD=BC•BE(1)求证:△BDE∽△BCA;(2)如果AE=AC,求证:AC2=AD•AB.23.(8分)综合与探究:已知二次函数y=﹣x2+x+2的图象与x轴交于A,B两点(点B在点A的左侧),与y轴交于点C.(1)求点A,B,C的坐标;(2)求证:△ABC为直角三角形;(3)如图,动点E,F同时从点A出发,其中点E以每秒2个单位长度的速度沿AB边向终点B运动,点F以每秒个单位长度的速度沿射线AC方向运动.当点F停止运动时,点E随之停止运动.设运动时间为t秒,连结EF,将△AEF沿EF翻折,使点A落在点D处,得到△DEF.当点F在AC上时,是否存在某一时刻t,使得△DCO≌△BCO?(点D不与点B重合)若存在,求出t的值;若不存在,请说明理由.24.(8分)如图,AB是⊙O的直径,CD是⊙O的弦,如果∠ACD=30°.(1)求∠BAD的度数;(2)若AD=,求DB的长.25.(10分)如图,在平面直角坐标系中,的三个顶点坐标分别为,,(1)画出关于轴对称的,并写出点的坐标;(2)画出绕原点顺时针方向旋转后得到的,并写出点的坐标;(3)将平移得到,使点的对应点是,点的对应点时,点的对应点是,在坐标系中画出,并写出点,的坐标.26.(10分)某校一课外活动小组为了了解学生最喜欢的球类运动况,随机抽查了本校九年级的200名学生,调查的结果如图所示,请根据该扇形统计图解答以下问题:(1)图中的值是________;(2)被查的200名生中最喜欢球运动的学生有________人;(3)若由3名最喜欢篮球运动的学生(记为),1名最喜欢乒乓球运动的学生(记为),1名最喜欢足球运动的学生(记为)组队外出参加一次联谊活动.欲从中选出2人担任组长(不分正副),列出所有可能情况,并求2人均是最喜欢篮球运动的学生的概率.

参考答案一、选择题(每小题3分,共30分)1、A【分析】先根据圆内接四边形的性质得出∠ADC=∠EBC=65°,再根据AC=AD得出∠ACD=∠ADC=65°,故可根据三角形内角和定理求出∠CAD=50°,再由圆周角定理得出∠DBC=∠CAD=50°.【详解】解:∵四边形ABCD内接于⊙O,∴∠ADC=∠EBC=65°.∵AC=AD,∴∠ACD=∠ADC=65°,∴∠CAD=180°-∠ACD-∠ADC=50°,∴∠DBC=∠CAD=50°,故选:A.【点睛】本题考查了圆内接四边形的性质,以及圆周角定理的推论,熟知圆内接四边形的对角互补是解答此题的关键.也考查了等腰三角形的性质以及三角形内角和定理.2、B【分析】由已知,可得菱形边长为5,设出点D坐标,即可用勾股定理构造方程,进而求出k值.【详解】过点D做DF⊥BC于F,由已知,BC=5,∵四边形ABCD是菱形,∴DC=5,∵BE=3DE,∴设DE=x,则BE=3x,∴DF=3x,BF=x,FC=5-x,在Rt△DFC中,DF2+FC2=DC2,∴(3x)2+(5-x)2=52,∴解得x=1,∴DE=1,FD=3,设OB=a,则点D坐标为(1,a+3),点C坐标为(5,a),∵点D、C在双曲线上,∴1×(a+3)=5a,∴a=,∴点C坐标为(5,)∴k=.故选B.【点睛】本题是代数几何综合题,考查了数形结合思想和反比例函数k值性质.解题关键是通过勾股定理构造方程.3、D【分析】由抛物线的开口方向判断a与1的关系,由抛物线与y轴的交点判断c与1的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】①∵抛物线与x轴有两不同的交点,∴△=b2﹣4ac>1.故①正确;②∵抛物线y=ax2+bx+c的图象经过点(1,2),∴代入得a+b+c=2.故②正确;③∵根据图示知,抛物线开口方向向上,∴a>1.又∵对称轴x=﹣<1,∴b>1.∵抛物线与y轴交与负半轴,∴c<1,∴abc<1.故③正确;④∵当x=﹣1时,函数对应的点在x轴下方,则a﹣b+c<1,故④正确;综上所述,正确的结论是:①②③④,共有4个.故选:D.【点睛】本题考查了二次函数图象与系数的关系.会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.4、C【分析】分式方程去分母转化为整式方程,表示出整式方程的解,由分式方程无解确定出m的值,不等式组整理后表示出解集,由整数解之和恰好为10确定出m的范围,进而求出符合条件的所有m的和即可.【详解】解:,分式方程去分母得:mx+2x-12=3x-9,移项合并得:(m-1)x=3,当m-1=0,即m=1时,方程无解;当m-1≠0,即m≠1时,解得:x=,由分式方程无解,得到:或,解得:m=2或m=,不等式组整理得:,即0≤x<,由整数解之和恰好为10,得到整数解为0,1,2,3,4,可得4<≤5,即,则符合题意m的值为1和,之和为.故选:C.【点睛】此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.5、C【分析】先移项变形为,再将两边同时加4,即可把左边配成完全平方式,进而得到答案.【详解】∵∴∴∴故选C.【点睛】本题考查配方法解一元二次方程,熟练掌握配方法的解法步骤是解题的关键.6、A【分析】利用点的平移进行解答即可.【详解】解:∵抛物线向右平移4个单位长度后与抛物线重合∴将(-1,3)向右平移4个单位长度的点在抛物线上∴(3,3)在抛物线上故选:A【点睛】本题考查了点的平移与函数平移规律,掌握点的规律是解题的关键.7、C【分析】先根据垂径定理得到,再根据圆周角定理得∠BOD=2∠CAB=40°,然后利用邻补角的定义计算∠AOD的度数.【详解】∵CD⊥AB,∴,∴∠BOD=2∠CAB=2×20°=40°,∴∠AOD=180°-∠BOD=180°-40°=140°.故答案为C.【点睛】本题考查圆中的角度计算,熟练掌握垂径定理和圆周角定理是关键.8、C【分析】一次函数y1=kx+b落在与反比例函数y1=图像上方的部分对应的自变量的取值范围即为不等式的解集.【详解】解:∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y1=(c是常数,且c≠0)的图象相交于A(﹣3,﹣1),B(1,m)两点,∴不等式y1>y1的解集是﹣3<x<0或x>1.故答案为C.【点睛】本题考查了一次函数、反比例函数图像与不等式的关系,从函数图像确定不等式的解集是解答本题的关键.9、B【解析】分析:根据特殊角的三角函数值来解答本题.详解:sin30°=.故选B.点睛:本题考查了特殊角的三角函数值,特殊角三角函数值的计算在中考中经常出现,题型以选择题、填空题为主.10、D【分析】利用方程根的定义可求得,再利用根与系数的关系即可求解.【详解】为一元二次方程的根,,.根据题意得,,.故选:D.【点睛】本题主要考查了一元二次方程的解,根与系数的关系以及求代数式的值,熟练掌握根与系数的关系,是解题的关键.二、填空题(每小题3分,共24分)11、【分析】利用弧长公式进行计算.【详解】解:故答案为:【点睛】本题考查弧长的计算,掌握公式正确计算是本题的解题关键.12、1【分析】根据题意,连接DF,得出∠P=∠BDF,由圆的性质,进而证明出∠BDF=∠BED,利用正方形网格图形,结合锐角三角函数值求出tan∠P即可.【详解】解:连接DF,如图,则∠P=∠BDF,∵BD为直径,∴∠BFD=90°,∵∠DBF+∠BDF=90°,∠EBD+∠BED=90°,∴∠BDF=∠BED,∴∠P=∠BED,∵tan∠BED==1,∴tan∠P=1.故答案为1.【点睛】本题考查了圆的基本性质,圆周角定理,同角的余角相等,锐角三角函数值应用,掌握圆的基本性质和相关知识点是解题的关键.13、37.1【分析】根据垂径定理求得AD=30cm,然后根据勾股定理得出方程,解方程即可求得半径.【详解】如图,设点O为外圆的圆心,连接OA和OC,∵CD=11cm,AB=60cm,∵CD⊥AB,∴OC⊥AB,∴AD=AB=30cm,∴设半径为rcm,则OD=(r﹣11)cm,根据题意得:r2=(r﹣11)2+302,解得:r=37.1,∴这个摆件的外圆半径长为37.1cm,故答案为37.1.【点睛】本题考查了垂径定理的应用以及勾股定理的应用,作出辅助线构建直角三角形是解本题的关键.14、y=x1+x﹣1.【解析】根据平移变化的规律,左右平移只改变点的横坐标,左减右加.上下平移只改变点的纵坐标,下减上加.因此,将抛物线y=x1+x向下平移1个单位,所得抛物线的表达式是y=x1+x﹣1.15、.【分析】根据题意可以求得和的度数,然后根据图形可知阴影部分的面积就是矩形的面积与矩形中间空白部分的面积之差再加上扇形EAF与的面积之差的和,本题得以解决.【详解】解:连接AE,∵,,,∴,∴,∴,,∴,∴阴影部分的面积是:,故答案为.【点睛】本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.16、31【分析】根据正方形的对角线相等且互相垂直,正方形是特殊的菱形,菱形的面积等于对角线乘积的一半进行求解即可.【详解】解:∵四边形ABCD为正方形,∴AC=BD=8cm,AC⊥BD,∴正方形ABCD的面积=×AC×BD=31cm1,故答案为:31.【点睛】本题考查了求解菱形的面积,属于简单题,熟悉求解菱形面积的特殊方法是解题关键.17、或或【分析】根据勾股定理得到AB、AD的值,再分3种情况根据相似三角形性质来求AP的值.【详解】解:∵在中,,,,∴AD=在Rt△ACB中,,,,∴CB=6+10=16∵AB²=AC²+BC²AB=①当⊙P与BC相切时,设切点为E,连结PE,则PE=4,∠AEP=90°∵AD=BD=10∴∠EAP=∠CBA,∠C=∠AEP=90°∴△APE∽△ACB②当⊙P与AC相切时,设切点为F,连结PF,则PF=4,∠AFP=90°∵∠C=∠AFP=90°∠CAD=∠FAP∴△CAD∽△FAP③当⊙P与BC相切时,设切点为G,连结PG,则PG=4,∠AGP=90°∵∠C=∠PGD=90°∠ADC=∠PDG∴△CAD∽△GPD故答案为:或或5【点睛】本题考查了利用相似三角形的性质对应边成比例来证明三角形边的长.注意分清对应边,不要错位.18、1【分析】将a代入方程中得到,将其整体代入中,进而求解.【详解】由题意知,,即,∴,故答案为:1.【点睛】本题考查了方程的根,求代数式的值,学会运用整体代入的思想是解题的关键.三、解答题(共66分)19、(1)β=90°-2α(0°<α<45°);(2)α=β=30°【分析】(1)首先证明,在中,根据两锐角互余,可知;(2)连接OF交AC于O′,连接CF,只要证明四边形AFCO是菱形,推出是等边三角形即可解决问题.【详解】解:(1)连接OC.∵DE是⊙O的切线,∴OC⊥DE,∵AD⊥DE,∴AD∥OC,∴∠DAC=∠ACO,∵OA=OC,∴∠OCA=∠OAC,∴∠DAE=2α,∵∠D=90°,∴∠DAE+∠E=90°,∴2α+β=90°∴β=90°-2α(0°<α<45°).(2)连接OF交AC于O′,连接CF.∵AO′=CO′,∴AC⊥OF,∴FA=FC,∴∠FAC=∠FCA=∠CAO,∴CF∥OA,∵AF∥OC,∴四边形AFCO是平行四边形,∵OA=OC,∴四边形AFCO是菱形,∴AF=AO=OF,∴△AOF是等边三角形,∴∠FAO=2α=60°,∴α=30°,∵2α+β=90°,∴β=30°,∴α=β=30°.【点睛】本题考查了圆和三角形的问题,掌握圆的切线的性质以及等边三角形的性质和证明是解题的关键.20、(1)w=-10x2+700x-10000;(2)35元【分析】(1)利用每件利润×销量=总利润,进而得出w与x的函数关系式;

(2)利用配方法求出二次函数最值进而得出答案.【详解】解:(1)由题意可得:w=(x-20)[250-10(x-25)]

=-10(x-20)(x-50)

=-10x2+700x-10000;

(2)∵w=-10x2+700x-10000=-10(x-35)2+2250,

∴当x=35时,w取到最大值2250,

即销售单价为35元时,每天销售利润最大,最大利润为2250元.【点睛】此题主要考查了二次函数的应用,根据销量与售价之间的关系得出函数关系式是解题关键.21、(1);(2);(3)①;②的取值范围是或.【分析】(1)根据t=3时,A的坐标可以求得是(3,-2),利用待定系数法即可求得抛物线的解析式,则B的坐标可以求得;

(2)△OAB的面积一定,当OA最小时,B到OA的距离即△OAB中OA边上的高最大,此时OA⊥AB,据此即可求解;

(3)①方法一:设AC,BD交于点E,直线l1:y=x-2,与x轴、y轴交于点P和Q(如图1).由点D在抛物线C2:y=[x-(2t-4)]2+(t-2)上,可得=[(t-1)-(2t-4)]2+(t-2),解方程即可得到t的值;

方法二:设直线l1:y=x-2与x轴交于点P,过点A作y轴的平行线,过点B作x轴的平行线,交于点N.(如图2),根据BD⊥AC,可得t-1=2t-,解方程即可得到t的值;

②设直线l1与l2交于点M.随着点A从左向右运动,从点D与点M重合,到点B与点M重合的过程中,可得满足条件的t的取值范围.【详解】解:(1)∵点A在直线l1:y=x-2上,且点A的横坐标为3,

∴点A的坐标为(3,-2),

∴抛物线C1的解析式为y=-x2-2,

∵点B在直线l1:y=x-2上,

设点B的坐标为(x,x-2).

∵点B在抛物线C1:y=-x2-2上,

∴x-2=-x2-2,

解得x=3或x=-1.

∵点A与点B不重合,

∴点B的坐标为(-1,-3),

∴由勾股定理得AB=.

(2)当OA⊥AB时,点B到直线OA的距离达到最大,则OA的解析式是y=-x,则

,解得:,

则点A的坐标为(1,-1).(3)①方法一:设,交于点,直线,与轴、轴交于点和(如图1).则点和点的坐标分别为,.∴.∵.∵轴,∴轴.∴.∵,,∴.∵点在直线上,且点的横坐标为,∴点的坐标为.∴点的坐标为.∵轴,∴点的纵坐标为.∵点在直线上,∴点的坐标为.∴抛物线的解析式为.∵,∴点的横坐标为,∵点在直线上,∴点的坐标为.∵点在抛物线上,∴.解得或.∵当时,点与点重合,∴方法二:设直线l1:y=x-2与x轴交于点P,过点A作y轴的平行线,过点B作x轴的平行线,交于点N.(如图2)

则∠ANB=93°,∠ABN=∠OPB.

在△ABN中,BN=ABcos∠ABN,AN=ABsin∠ABN.

∵在抛物线C1随顶点A平移的过程中,

AB的长度不变,∠ABN的大小不变,

∴BN和AN的长度也不变,即点A与点B的横坐标的差以及纵坐标的差都保持不变.

同理,点C与点D的横坐标的差以及纵坐标的差也保持不变.

由(1)知当点A的坐标为(3,-2)时,点B的坐标为(-1,-3),

∴当点A的坐标为(t,t-2)时,点B的坐标为(t-1,t-3).

∵AC∥x轴,

∴点C的纵坐标为t-2.

∵点C在直线l2:y=x上,

∴点C的坐标为(2t-4,t-2).

令t=2,则点C的坐标为(3,3).

∴抛物线C2的解析式为y=x2.

∵点D在直线l2:y=x上,

∴设点D的坐标为(x,).

∵点D在抛物线C2:y=x2上,

∴=x2.

解得x=或x=3.

∵点C与点D不重合,

∴点D的坐标为(,).

∴当点C的坐标为(3,3)时,点D的坐标为(,).

∴当点C的坐标为(2t-4,t-2)时,点D的坐标为(2t−,t−).

∵BD⊥AC,

∴t−1=2t−.

∴t=.

②t的取值范围是t<或t>4.

设直线l1与l2交于点M.随着点A从左向右运动,从点D与点M重合,到点B与点M重合的过程中,以A,B,C,D为顶点构成的图形不是凸四边形.

【点睛】本题考查了二次函数综合题,掌握待定系数法求得函数的解析式,点到直线的距离,平行于坐标轴的点的特点,方程思想的运用是解题的关键.22、(1)证明见解析;(2)证明见解析.【解析】(1)由BA•BD=BC•BE得,结合∠B=∠B,可证△ABC∽△EBD;(2)先根据BA•BD=BC•BE,∠B=∠B,证明△BAE∽△BCD,再证明△ADC∽△ACB,根据相似三角形的对应边长比例可证明结论.【详解】(1)证明:∵BA•BD=BC•BE.∴,∵∠B=∠B,∴△BDE∽△BCA;(2)证明:∵BA•BD=BC•BE.∴,∵∠B=∠B,∴△BAE∽△BCD,∴,∵AE=AC,∴,∵∠AEC=∠B+∠BAE,∠ACE=∠ACD+∠BCD,∴∠B=∠ACD.∵∠BAC=∠BAC∴△ADC∽△ACB,∴.【点睛】本题主要考查相似三角形的判定与性质,熟练掌握两三角形相似的判定方法是解题的关键.相似三角形的判定方法有:①对应角相等,对应边成比例的两个三角形叫做相似三角形;②平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似;③根据两角相等的两个三角形相似;④两边对应成比例,且夹角相等的两个三角形相似判定即可;⑤三边对应成比例得两个三角形相似.23、(1)点A的坐标为(4,0),点B的坐标为(﹣1,0),点C的坐标为(0,1);(1)证明见解析;(3)t=.【分析】(1)利用x=0和y=0解方程即可求出A、B、C三点坐标;

(1)先计算△ABC的三边长,根据勾股定理的逆定理可得结论;

(3)先证明△AEF∽△ACB,得∠AEF=∠ACB=90°,确定△AEF沿EF翻折后,点A落在x轴上点D处,根据△DCO≌△BCO时,BO=OD,列方程4-4t=1,可得结论.【详解】(1)解:当y=0时,﹣x+1=0,解得:x1=1,x1=4,∴点A的坐标为(4,0),点B的坐标为(﹣1,0),当x=0时,y=1,∴点C的坐标为(0,1);(1)证明:∵A(4,0),B(﹣1,0),C(0,1),∴OA=4,OB=1,OC=1.∴AB=5,AC==,∴AC1+BC1=15=AB1,∴△ABC为直角三角形;(3)解:由(1)可知△ABC为直角三角形.且∠ACB=90°,∵AE=1t,AF=t,∴,又∵∠EAF=∠CAB,∴△AEF∽△ACB,∴∠AEF=∠ACB=90°,∴△AEF沿EF翻折后,点A落在x轴上点D处,由翻折知,DE=AE,∴AD=1AE=4t,当△DCO≌△BCO时,BO=OD,∵OD=4﹣4t

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论