版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
【原卷版】专题04幂函数、指数函数与对数函数第4章幂函数、指数函数与对数函数【课本目录】4.1幂函数:4.1.1幂函数的定义与图像;4.1.2幂函数的性质;4.2指数函数:4.2.1指数函数的定义与图像;4.2.2指数函数的性质;4.3对数函数:4.3.1对数函数的定义与图像;4.3.2对数函数的性质;本章内容提要1.幂函数的定义域由指数的不同,幂函数的定义域是不同的.特别地,当指数取有理数时(为正整数,为整数),幂函数的定义域是使得根式有意义的的全体.2.幂函数有单调性:当时,它在上严格递增;而当时,它在上严格递减.3.指数函数(,)的定义域是全体实数.4.指数函数(,)有单调性;当时,它在上严格递增;而当时,它在上严格递减.5.对数函数的定义域是正数全体.6.对数函数有单调性:当时,它在上严格递增;而当时,它在上严格递减.题型1、对幂函数的概念的理解例1、(1)函数f(x)=(a-b)+b-3是幂函数,则下列结论正确的是()A.f(a)>f(b) B.f(a)<f(b)C.f(a)=f(b) D.以上都不对(2)已知y=(m2+2m-2)+2n-3是幂函数,求m,n的值.【说明】理解幂函数的概念、判断及应用:1、判断一个函数是否为幂函数的依据是该函数是否为y=xα(α为常数)的形式,需满足:①指数为常数,②底数为自变量,③xαy=(3x)α,y=2xα,y=xα+5…形式的函数都不是幂函数;2、若一个函数为幂函数,则该函数也必具有y=xα(α为常数)这一形式;题型2、幂函数的图象与性质例2、(1)若点(eq\r(2),2)在幂函数f(x)的图象上,点eq\b\lc\(\rc\)(\a\vs4\al\co1(-2,\f(1,4)))在幂函数g(x)的图象上,问当x为何值时,①f(x)>g(x);②f(x)=g(x);③f(x)<g(x);(2)已知幂函数y=xα(α∈R)的图象过点(2,8),下列说法正确的序号是①函数y=xα的图象过原点;②函数y=xα是偶函数;③函数y=xα是单调减函数;④函数y=xα的值域为R;【说明】1、幂函数图象的画法:①确定幂函数在第一象限内的图象:先根据α的取值,确定幂函数y=xα在第一象限内的图象.②确定幂函数在其他象限内的图象:根据幂函数的定义域及奇偶性确定幂函数f(x)在其他象限内的图象.2、对于幂函数图象只要掌握住在第一象限内三条线把第一象限划分为六个区域,即x=1,y=1,y=x所分区域.根据α<0,0<α<1,α=1,α>1确定位置后,其余象限部分由奇偶性决定.3、在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较.4、一般幂函数的图象特征:(1)所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1);(2)当α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上单调递增.特别地,当α>1时,幂函数的图象下凸;当0<α<1时,幂函数的图象上凸;(3)当α<0时,幂函数在区间(0,+∞)上单调递减;(4)幂指数互为倒数的幂函数在第一象限内的图象关于直线y=x对称;(5)在第一象限,作直线x=a(a>1),它同各幂函数图象相交,按交点从下到上的顺序,幂指数按从小到大的顺序排列;题型3、幂函数的性质的综合应用例3、(1)给出幂函数:①f(x)=x;②f(x)=x2;③f(x)=x3;④f(x)=eq\r(x);⑤f(x)=eq\f(1,x);其中满足条件f
eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(x1+x2,2)))>eq\f(f(x1)+f(x2),2)(x1>x2>0)的函数的个数是()A.1B.2C.3D.4(2)已知幂函数y=x3m-9(m∈N*)的图象关于y轴对称且在(0,+∞)上单调递减,求满足的的取值范围;【说明】本题通过幂函数的图象特征抽象出幂函数的奇偶性,根据幂函数的单调性确定参数的值,得到幂函数的解析式,然后利用其单调性解不等式,在此过程中体现了数学中数学抽象与直观想象的核心素养;解决与幂函数有关的综合性问题的方法:首先要考虑幂函数的概念,对于幂函数y=xα(α是常数),由于α的取值不同,所以相应幂函数的单调性和奇偶性也不同;同时,注意分类讨论思想的应用;题型4、对指数函数的概念的理解例4、(1)给出下列函数:①y=2·3x;②y=3x+1;③y=3x;④y=x3;⑤y=(-2)x;其中,指数函数的个数是()A.0B.1C.2D.4(2)若函数y=(2a-1)x(x是自变量)是指数函数,则a的取值范围是【说明】判断一个函数是否为指数函数的方法:1、底数的值是否符合要求;2、ax前的系数是否为1;3、指数是否符合要求;题型5、指数函数的图象与性质例5、(1)函数f(x)=ax-b的图象如图所示,其中a,b为常数,则下列结论正确的是()A.a>1,b<0B.a>1,b>0C.0<a<1,b>0D.0<a<1,b<0(2)直线y=2a与函数y=|ax-1|(a>0,且a≠1)的图象有两个公共点,则a的取值范围是________.【说明】应用指数函数图象的4个技巧:1、画指数函数y=ax(a>0,且a≠1)的图象,应抓住三个关键点:(1,a),(0,1),eq\b\lc\(\rc\)(\a\vs4\al\co1(-1,\f(1,a))).2、已知函数解析式判断函数图象一般是取特殊点,判断所给的图象是否过这些点,若不满足,则排除.3、对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、伸缩、对称变换得到相应函数的图象.当底数a与1的大小关系不确定时,应注意分类讨论;4、有关指数方程、不等式问题的求解,往往要作出相应的指数型函数图象,运用数形结合的思想求解;题型6、指数函数的性质的综合应用例6、(1)求:函数:f(x)=的严格单调递增、递减区间;【说明】1、求复合函数的单调区间,首先求出函数的定义域,然后把函数分解成y=f(u),u=φ(x),通过考察f(u)和φ(x)的单调性,利用同增异减原则,求出y=f(φ(x))的单调性;2、关于指数型函数y=af(x)(a>0,且a≠1)的单调性由两点决定,一是底数a>1还是0<a<1;二是f(x)的单调性,它由两个函数y=au,u=f(x)复合而成;(2)已知<ax+6(a>0,a≠1),求x的取值范围;【说明】1、利用指数型函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式;2、解不等式af(x)>ag(x)(a>0,a≠1)的依据是指数型函数的单调性,要养成判断底数取值范围的习惯,若底数不确定,就需进行分类讨论,即af(x)>ag(x)⇒f(x)>g(x)(a>1)或f(x)<g(x)(0<a<1);题型7、对对数函数的概念的理解例7、(1)下列函数表达式中,是对数函数的有()①y=logx2;②y=logax(a∈R);③y=log8x;④y=lnx;⑤y=logx(x+2);⑥y=2log4x;⑦y=log2(x+1).A.1个 B.2个 C.3个 D.4个(2)若函数f(x)=log(a+1)x+(a2-2a-8)是对数函数,则实数a=________.【说明】判断一个函数是对数函数的方法:1、系数:对数符号前面的系数为1;2、底数:对数的底数是不等于1的正常数;3、真数:对数的真数仅有自变量;题型8、对数函数的图象与性质例8、(1)当a>1时,在同一坐标系中,函数y=a-x与y=logax的图象为()(2)作出下列函数的大致图象:①y=|log2x|;②)y=|log2(x-1)|;③y=|log2(1-x)|.;【说明】有关对数函数图象间的变换规律1、一般地,函数y=f(x+a)+b(a,b为实数)的图象是由函数y=f(x)的图象沿x轴向左(a>0)或向右(a<0)平移|a|个单位长度,再沿y轴向上(b>0)或向下(b<0)平移|b|个单位长度得到的;2、含有绝对值的函数的图象是一种对称变换,一般地,y=f(|x-a|)的图象是关于直线x=a对称的轴对称图;.题型9、对数函数的性质的综合应用例9、(1)已知y=loga(2-ax)在[0,1]上单调递减,则a的取值范围为()A.(0,1) B.(1,2)C.(0,2) D.[2,+∞)【说明】形如f(x)=logag(x)(a>0,且a≠1)的函数的单调区间的求法:1、先求g(x)>0的解集(也就是函数f(x)的定义域);2、当底数a>1时,在g(x)>0这一前提下,g(x)的单调增区间是f(x)的单调增区间;g(x)的单调减区间是f(x)的单调减区间;3、当底数0<a<1时,在g(x)>0这一前提下,g(x)的单调增区间是f(x)的单调减区间,g(x)的单调减区间是f(x)的单调增区间;(2)解不等式:loga(2x-5)>loga(x-1);【说明】对数不等式的三种考查类型及解法:1、形如logax>logab的不等式,借助y=logax的单调性求解,如果a的取值不确定,需分a>1与0<a<1两种情况进行讨论;2、形如logax>b的不等式,应将b化为以a为底数的对数式的形式(b=logaab),再借助y=logax的单调性求解;3、形如logf(x)a>logg(x)a(f(x),g(x)>0且不等于1,a>0)的不等式,可利用换底公式化为同底的对数进行求解,或利用函数图象求解;题型10、幂、指数函数与对数函数的初步应用例10、(1)一个人以6米/秒的速度去追停在交通灯前的汽车,当他离汽车25米时,交通灯由红变绿,绿灯时长超过5s,汽车以1米/秒2的加速度匀加速开走,那么()A.人可在7秒内追上汽车B.人可在10秒内追上汽车C.人追不上汽车,其间距最少为5米D.人追不上汽车,其间距最少为7米(2)春天来了,某池塘中的荷花枝繁叶茂,已知每一天新长出荷叶覆盖水面面积是前一天的2倍,若荷叶20天可以完全长满池塘水面,当荷叶刚好覆盖水面面积一半时,荷叶已生长了________天.题型11、函数的图象的作法例11、作出下列函数的大致图象.(1)y=x-|x-1|;(2)y=eq\f(2x-1,x-1);(3)y=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))|x|;(4)y=|log2x-1|.【说明】1、作函数图象的两种常用方法:(1)直接法:当函数表达式(或变形后的表达式)是熟悉的基本初等函数时,就可根据这些函数的特征直接作出;(2)图象变换法:若函数图象可由某个基本初等函数的图象经过平移、翻折、对称得到,可利用图象变换作出,但要注意变换顺序;2、函数图象对称变换的相关结论(1)y=f(x)的图象关于直线x=m对称的图象是函数y=f(2m-x)的图象;(2)y=f(x)的图象关于直线y=n对称的图象是函数y=2n-f(x)的图象;(3)y=f(x)的图象关于点(a,b)对称的图象是函数y=2b-f(2a-x)的图象;题型12、辨识函数图象与用好函数图象例12、(1)(1)函数y=eq\f(e|x|,4x)的图象可能是()【说明】已知函数解析式选图或知图选函数解析式时的解题技巧:根据函数性质与函数的图象特征的对应关系切入.具体如下:函数性质函数图象特征函数的定义域图象的左右位置函数的值域图象的上下位置函数的奇偶性图象的对称性函数的单调性图象的变化趋势函数的周期性图象的循环往复函数的零点图象与x轴的交点情况函数经过的定点、极值点等函数图象上的特殊点(2)已知函数f(x)=x|x|-2x,则下列结论正确的是()A.f(x)是偶函数,递增区间是(0,+∞)B.f(x)是偶函数,递减区间是(-∞,1)C.f(x)是奇函数,递减区间是(-1,1)D.f(x)是奇函数,递增区间是(-∞,0)【说明】对于已知解析式或易画出在给定区间上的图象的函数,常借助图象研究其性质:1、从图象的最高点、最低点分析函数的最值、极值;2、从图象的对称性分析函数的奇偶性;3、从图象的走向趋势分析函数的单调性、以及以后的函数的周期性;1、构成集合的对象必须是“确定”的题型13、有关幂、指数函数与对数函数的新颖题新高考下,高考数学命题遵循课程标准,深化基础性考查,注重数学本质与创造性思维,深入考查核心素养和关键能力,加强情境化设计,增强题目的开放性.新情境、新设问、新题型等都成为新高考的一个特色.机械刷题、套路解题已远远达不到新高考的要求,减少刷题、减少套路,重思维、提能力;例13、已知g(x)为偶函数,h(x)为奇函数,且满足g(x)-h(x)=2x.若存在x∈[-1,1],使得不等式m·g(x)+h(x)≤0有解,则实数m的最大值为()A.eq\f(3,5)B.-eq\f(3,5)C.1D.-1例14、设函数f(x)的定义域为D,若满足:①f(x)在D内是单调增函数;②存在[m,n]⊆D(n>m),使得f(x)在[m,n]上的值域为[m,n],那么就称y=f(x)是定义域为D的“成功函数”.若函数g(x)=loga(a2x+t)(a>0且a≠1)是定义域为R的“成功函数”,则t的取值范围是()A.eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(1,4)))B.eq\b\lc\(\rc\](\a\vs4\al\co1(0,\f(1,4)))C.eq\b\lc\(\rc\)(\a\vs4\al\co1(-∞,\f(1,4)))D.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,4),+∞))例15、若ea+πb≥e-b+π-a,则a与b的关系式为________.例16、设f(x)=2-x,g(x)的图象与f(x)的图象关于直线y=x对称,h(x)的图象由g(x)的图象向右平移1个单位长度得到,则h(x)=.例17、已知f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(|lgx|,x>0,,2|x|,x≤0,))则方程2f2(x)-3f(x)+1=0的解的个数是________.【说明】利用函数的图象解不等式的基本思路:当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数图象的位置关系问题或函数图象与坐标轴的位置关系问题,从而利用数形结合法求解;题型14、有关幂、指数函数与对数函数的综合题例18、已知函数f(x)=2x-x-1,则不等式f(x)>0的解集是()A.(-1,1)B.(-∞,-1)∪(1,+∞)C.(0,1)D.(-∞,0)∪(1,+∞)例19、已知函数f(x)=a|x+b|(a>0,且a≠1,b∈R).(1)若f(x)为偶函数,求b的值;(2)若f(x)在区间[2,+∞)上是增函数,试求a,b应满足的条件.【说明】与指数函数有关的复合函数的单调性,要弄清复合函数由哪些基本初等函数复合而成,要注意数形结合思想的运用;例20、已知函数f(x)=log2eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,x+a)+1))是奇函数,a∈R;(1)求a的值;(2)对任意的x∈(-∞,0),不等式f(2x+1)>log2(m-2x)恒成立,求实数m的取值范围.【说明】本题考查函数奇偶性的应用,以及不等式恒成立问题,将恒成立问题转化为最值问题是关键,另外要注意对数的真数部分也要恒大于零;一、填空题(共10小题,每小题4分,满分40分)1、在函数y=eq\f(1,x2),y=2x2,y=x2+x,y=1中,幂函数的个数为(个)2、若函数f(x)是幂函数,且满足f(4)=16,则f(-4)的值等于________.3、函数y=1-2x,x∈[0,1]的值域是4、若函数f(x)=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3)))|x-2|,则f(x)的严格单调递减区间是5、已知函数f(x)=ax(a>0,且a≠1)在[-1,1]上恒有f(x)<2,则实数a的取值范围为6、若函数f(x)=loga(x+2)+2(a>0,且a≠1)的图象恒过点M,则点M的坐标为7、碳14的半衰期为5730年,那么碳14的年衰变率为8、函数f(x)=的值域是9、若函数f(x)=eq\f(ax-2,x-1)的图象关于点(1,1)对称,则实数a=________.10、已知函数f(x)=(m2-m-1)xm2+m-3是幂函数,对任意x1,x2∈(0,+∞),且x1≠x2,满足eq\f(f(x1)-f(x2),x1-x2)a,b∈R,且f(a)+f(b)的值为负值,则下列结论可能成立的序号是①a+b>0,ab<0 ②a+b<0,ab>0③a+b<0,ab<0 ④以上都可能二、选择题(共4小题每小题4分,满分16分)11、如图所示,图中的曲线是幂函数y=xn在第一象限的图象,已知n取±2,±eq\f(1,2)四个值,则相应于C1,C2,C3,C4的n依次为()A.-2,-eq\f(1,2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年城市供水供气合同
- 2024年度变电站工程咨询与项目管理承包合同
- 2024年度冰雪运动场地租赁与改造合同
- 2024年度医院药品供应合同
- 企业基层管理
- 2024年度北京市商铺租赁合同涉及的消防安全问题
- 2024年度企业市场调查与分析合同
- 2024年度影视版权购买合同标的为电影版权
- 房屋租赁合同范例单张
- 电梯销售返利合同范例
- 《相似三角形的判定与性质-相似三角形的判定》-完整版课件
- 八年级物理光学部分竞赛试题(卷)与答案
- 急救中心急救站点建设标准
- 《花卉栽培技术》课程思政教学案例
- 福乐伟离心机说明书
- 小学科学教育科学五年级上册光《光是怎样传播的》教学设计
- 《水浒传》导读5武松课件
- 英国的宗教改革课件
- 二年级数学上册第五单元《观察物体(一)》单元备课(集体备课)
- 拖欠房租起诉书【5篇】
- 12种气候类型表解
评论
0/150
提交评论