版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省济南市历城二中高三第一次检测试题数学试题(快班)注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若函数满足,且,则的最小值是()A. B. C. D.2.设,,,则()A. B. C. D.3.已知函数,若对任意,都有成立,则实数的取值范围是()A. B. C. D.4.已知双曲线的左、右顶点分别是,双曲线的右焦点为,点在过且垂直于轴的直线上,当的外接圆面积达到最小时,点恰好在双曲线上,则该双曲线的方程为()A. B.C. D.5.如图,正四面体的体积为,底面积为,是高的中点,过的平面与棱、、分别交于、、,设三棱锥的体积为,截面三角形的面积为,则()A., B.,C., D.,6.点在所在的平面内,,,,,且,则()A. B. C. D.7.若非零实数、满足,则下列式子一定正确的是()A. B.C. D.8.某几何体的三视图如图所示,则该几何体的最长棱的长为()A. B. C. D.9.若x∈(0,1),a=lnx,b=,c=elnx,则a,b,c的大小关系为()A.b>c>a B.c>b>a C.a>b>c D.b>a>c10.已知六棱锥各顶点都在同一个球(记为球)的球面上,且底面为正六边形,顶点在底面上的射影是正六边形的中心,若,,则球的表面积为()A. B. C. D.11.已知斜率为的直线与双曲线交于两点,若为线段中点且(为坐标原点),则双曲线的离心率为()A. B.3 C. D.12.在正方体中,E是棱的中点,F是侧面内的动点,且与平面的垂线垂直,如图所示,下列说法不正确的是()A.点F的轨迹是一条线段 B.与BE是异面直线C.与不可能平行 D.三棱锥的体积为定值二、填空题:本题共4小题,每小题5分,共20分。13.已知数列是等比数列,,则__________.14.将函数的图像向右平移个单位,得到函数的图像,则函数在区间上的值域为__________.15.已知复数z1=1﹣2i,z2=a+2i(其中i是虚数单位,a∈R),若z1•z2是纯虚数,则a的值为_____.16.若、满足约束条件,则的最小值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)当时,求曲线在点处的切线方程;(2)若在上恒成立,求的取值范围.18.(12分)在直角坐标系中,椭圆的左、右焦点分别为,点在椭圆上且轴,直线交轴于点,,椭圆的离心率为.(1)求椭圆的方程;(2)过的直线交椭圆于两点,且满足,求的面积.19.(12分)已知函数.(1)若曲线在处的切线为,试求实数,的值;(2)当时,若有两个极值点,,且,,若不等式恒成立,试求实数m的取值范围.20.(12分)已知函数(),是的导数.(1)当时,令,为的导数.证明:在区间存在唯一的极小值点;(2)已知函数在上单调递减,求的取值范围.21.(12分)在四棱锥中,底面为直角梯形,,,,,,,分别为,的中点.(1)求证:.(2)若,求二面角的余弦值.22.(10分)已知,函数有最小值7.(1)求的值;(2)设,,求证:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
由推导出,且,将所求代数式变形为,利用基本不等式求得的取值范围,再利用函数的单调性可得出其最小值.【题目详解】函数满足,,即,,,,即,,则,由基本不等式得,当且仅当时,等号成立.,由于函数在区间上为增函数,所以,当时,取得最小值.故选:A.【题目点拨】本题考查代数式最值的计算,涉及对数运算性质、基本不等式以及函数单调性的应用,考查计算能力,属于中等题.2、A【解题分析】
先利用换底公式将对数都化为以2为底,利用对数函数单调性可比较,再由中间值1可得三者的大小关系.【题目详解】,,,因此,故选:A.【题目点拨】本题主要考查了利用对数函数和指数函数的单调性比较大小,属于基础题.3、D【解题分析】
先将所求问题转化为对任意恒成立,即得图象恒在函数图象的上方,再利用数形结合即可解决.【题目详解】由得,由题意函数得图象恒在函数图象的上方,作出函数的图象如图所示过原点作函数的切线,设切点为,则,解得,所以切线斜率为,所以,解得.故选:D.【题目点拨】本题考查导数在不等式恒成立中的应用,考查了学生转化与化归思想以及数形结合的思想,是一道中档题.4、A【解题分析】
点的坐标为,,展开利用均值不等式得到最值,将点代入双曲线计算得到答案.【题目详解】不妨设点的坐标为,由于为定值,由正弦定理可知当取得最大值时,的外接圆面积取得最小值,也等价于取得最大值,因为,,所以,当且仅当,即当时,等号成立,此时最大,此时的外接圆面积取最小值,点的坐标为,代入可得,.所以双曲线的方程为.故选:【题目点拨】本题考查了求双曲线方程,意在考查学生的计算能力和应用能力.5、A【解题分析】
设,取与重合时的情况,计算出以及的值,利用排除法可得出正确选项.【题目详解】如图所示,利用排除法,取与重合时的情况.不妨设,延长到,使得.,,,,则,由余弦定理得,,,又,,当平面平面时,,,排除B、D选项;因为,,此时,,当平面平面时,,,排除C选项.故选:A.【题目点拨】本题考查平行线分线段成比例定理、余弦定理、勾股定理、三棱锥的体积计算公式、排除法,考查了空间想象能力、推理能力与计算能力,属于难题.6、D【解题分析】
确定点为外心,代入化简得到,,再根据计算得到答案.【题目详解】由可知,点为外心,则,,又,所以①因为,②联立方程①②可得,,,因为,所以,即.故选:【题目点拨】本题考查了向量模长的计算,意在考查学生的计算能力.7、C【解题分析】
令,则,,将指数式化成对数式得、后,然后取绝对值作差比较可得.【题目详解】令,则,,,,,因此,.故选:C.【题目点拨】本题考查了利用作差法比较大小,同时也考查了指数式与对数式的转化,考查推理能力,属于中等题.8、D【解题分析】
先根据三视图还原几何体是一个四棱锥,根据三视图的数据,计算各棱的长度.【题目详解】根据三视图可知,几何体是一个四棱锥,如图所示:由三视图知:,所以,所以,所以该几何体的最长棱的长为故选:D【题目点拨】本题主要考查三视图的应用,还考查了空间想象和运算求解的能力,属于中档题.9、A【解题分析】
利用指数函数、对数函数的单调性直接求解.【题目详解】∵x∈(0,1),∴a=lnx<0,b=()lnx>()0=1,0<c=elnx<e0=1,∴a,b,c的大小关系为b>c>a.故选:A.【题目点拨】本题考查三个数的大小的判断,考查指数函数、对数函数的单调性等基础知识,考查运算求解能力,是基础题.10、D【解题分析】
由题意,得出六棱锥为正六棱锥,求得,再结合球的性质,求得球的半径,利用表面积公式,即可求解.【题目详解】由题意,六棱锥底面为正六边形,顶点在底面上的射影是正六边形的中心,可得此六棱锥为正六棱锥,又由,所以,在直角中,因为,所以,设外接球的半径为,在中,可得,即,解得,所以外接球的表面积为.故选:D.【题目点拨】本题主要考查了正棱锥的几何结构特征,以及外接球的表面积的计算,其中解答中熟记几何体的结构特征,熟练应用球的性质求得球的半径是解答的关键,着重考查了空间想象能力,以及推理与计算能力,属于中档试题.11、B【解题分析】
设,代入双曲线方程相减可得到直线的斜率与中点坐标之间的关系,从而得到的等式,求出离心率.【题目详解】,设,则,两式相减得,∴,.故选:B.【题目点拨】本题考查求双曲线的离心率,解题方法是点差法,即出现双曲线的弦中点坐标时,可设弦两端点坐标代入双曲线方程相减后得出弦所在直线斜率与中点坐标之间的关系.12、C【解题分析】
分别根据线面平行的性质定理以及异面直线的定义,体积公式分别进行判断.【题目详解】对于,设平面与直线交于点,连接、,则为的中点分别取、的中点、,连接、、,,平面,平面,平面.同理可得平面,、是平面内的相交直线平面平面,由此结合平面,可得直线平面,即点是线段上上的动点.正确.对于,平面平面,和平面相交,与是异面直线,正确.对于,由知,平面平面,与不可能平行,错误.对于,因为,则到平面的距离是定值,三棱锥的体积为定值,所以正确;故选:.【题目点拨】本题考查了正方形的性质、空间位置关系、空间角、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
根据等比数列通项公式,首先求得,然后求得.【题目详解】设的公比为,由,得,故.故答案为:【题目点拨】本小题主要考查等比数列通项公式的基本量计算,属于基础题.14、【解题分析】
根据图像的平移变换得到函数的解析式,再利用整体思想求函数的值域.【题目详解】函数的图像向右平移个单位得,,,.故答案为:.【题目点拨】本题考查三角函数图像的平移变换、值域的求解,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意整体思想的运用.15、-1【解题分析】
由题意,令即可得解.【题目详解】∵z1=1﹣2i,z2=a+2i,∴,又z1•z2是纯虚数,∴,解得:a=﹣1.故答案为:﹣1.【题目点拨】本题考查了复数的概念和运算,属于基础题.16、【解题分析】
作出不等式组所表示的可行域,利用平移直线的方法找出使得目标函数取得最小时对应的最优解,代入目标函数计算即可.【题目详解】作出不等式组所表示的可行域如下图所示:联立,解得,即点,平移直线,当直线经过可行域的顶点时,该直线在轴上的截距最小,此时取最小值,即.故答案为:.【题目点拨】本题考查简单的线性规划问题,考查线性目标函数的最值问题,考查数形结合思想的应用,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】
(1),对函数求导,分别求出和,即可求出在点处的切线方程;(2)对求导,分、和三种情况讨论的单调性,再结合在上恒成立,可求得的取值范围.【题目详解】(1)因为,所以,所以,则,故曲线在点处的切线方程为.(2)因为,所以,①当时,在上恒成立,则在上单调递增,从而成立,故符合题意;②当时,令,解得,即在上单调递减,则,故不符合题意;③当时,在上恒成立,即在上单调递减,则,故不符合题意.综上,的取值范围为.【题目点拨】本题考查了曲线的切线方程的求法,考查了利用导数研究函数的单调性,考查了不等式恒成立问题,利用分类讨论是解决本题的较好方法,属于中档题.18、(1);(2).【解题分析】
(1)根据离心率以及,即可列方程求得,则问题得解;(2)设直线方程为,联立椭圆方程,结合韦达定理,根据题意中转化出的,即可求得参数,则三角形面积得解.【题目详解】(1)设,由题意可得.因为是的中位线,且,所以,即,因为进而得,所以椭圆方程为(2)由已知得两边平方整理可得.当直线斜率为时,显然不成立.直线斜率不为时,设直线的方程为,联立消去,得,所以,由得将代入整理得,展开得,整理得,所以.即为所求.【题目点拨】本题考查由离心率求椭圆的方程,以及椭圆三角形面积的求解,属综合中档题.19、(1);(2).【解题分析】
(1)根据题意,求得的值,根据切点在切线上以及斜率等于,构造方程组求得的值;(2)函数有两个极值点,等价于方程的两个正根,,不等式恒成立,等价于恒成立,,令,求出导数,判断单调性,即可得到的范围,即的范围.【题目详解】(1)由题可知,,,联立可得.(2)当时,,,有两个极值点,,且,,是方程的两个正根,,,不等式恒成立,即恒成立,,由,,得,,令,,在上是减函数,,故.【题目点拨】该题考查的是有关导数的问题,涉及到的知识点有导数的几何意义,函数的极值点的个数,构造新函数,应用导数研究函数的值域得到参数的取值范围,属于较难题目.20、(1)见解析;(2)【解题分析】
(1)设,,注意到在上单增,再利用零点存在性定理即可解决;(2)函数在上单调递减,则在恒成立,即在上恒成立,构造函数,求导讨论的最值即可.【题目详解】(1)由已知,,所以,设,,当时,单调递增,而,,且在上图象连续不断.所以在上有唯一零点,当时,;当时,;∴在单调递减,在单调递增,故在区间上存在唯一的极小值点,即在区间上存在唯一的极小值点;(2)设,,,∴在单调递增,,即,从而,因为函数在上单调递减,∴在上恒成立,令,∵,∴,在上单调递减,,当时,,则在上单调递减,,符合题意.当时,在上单调递减,所以一定存在,当时,,在上单调递增,与题意不符,舍去.综上,的取值范围是【题目点拨】本题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 超市经营合同三篇
- 医用电子仪器设备相关行业投资方案范本
- 市场定位与品牌战略计划
- 新型地热用热交换器相关项目投资计划书
- UV激光切割机相关行业投资规划报告范本
- 大孔烧结空心砖相关行业投资规划报告
- 结合地方文化的艺术课程设计计划
- 汽车厂生产线升级改造工程合同三篇
- 葡萄运输合同三篇
- 设计优化培训
- 儿童流感诊疗及预防指南(2024医生版)
- 【课件】第21课《小圣施威降大圣》课件2024-2025学年统编版语文七年级上册
- 工程计价学-001-国开机考复习资料
- 《孟母三迁》课本剧剧本:环境对成长的重要性(6篇)
- 《富马酸卢帕他定口崩片关键质量属性与标准研究》
- 走近非遗 课件 2024-2025学年湘美版(2024)初中美术七年级上册
- 新生儿坏死性小肠结肠炎临床诊疗指南解读 课件
- 网络数据安全管理条例
- 2024版2024年【人教版】二年级上册《道德与法治》全册教案
- 山东省泰安市2024届高三上学期期末数学试题(含答案解析)
- 少儿编程获奖课件
评论
0/150
提交评论