版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省衡阳县第三中学2024届高三下-期中统一考试数学试题试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,则该几何体的体积为()A. B. C. D.2.若复数,其中为虚数单位,则下列结论正确的是()A.的虚部为 B. C.的共轭复数为 D.为纯虚数3.若复数满足,则(其中为虚数单位)的最大值为()A.1 B.2 C.3 D.44.已知双曲线的焦距为,若的渐近线上存在点,使得经过点所作的圆的两条切线互相垂直,则双曲线的离心率的取值范围是()A. B. C. D.5.已知命题:“关于的方程有实根”,若为真命题的充分不必要条件为,则实数的取值范围是()A. B. C. D.6.在中,角所对的边分别为,已知,则()A.或 B. C. D.或7.一个几何体的三视图如图所示,正视图、侧视图和俯视图都是由一个边长为的正方形及正方形内一段圆弧组成,则这个几何体的表面积是()A. B. C. D.8.若复数满足,复数的共轭复数是,则()A.1 B.0 C. D.9.为实现国民经济新“三步走”的发展战略目标,国家加大了扶贫攻坚的力度.某地区在2015年以前的年均脱贫率(脱离贫困的户数占当年贫困户总数的比)为.2015年开始,全面实施“精准扶贫”政策后,扶贫效果明显提高,其中2019年度实施的扶贫项目,各项目参加户数占比(参加该项目户数占2019年贫困户总数的比)及该项目的脱贫率见下表:实施项目种植业养殖业工厂就业服务业参加用户比脱贫率那么年的年脱贫率是实施“精准扶贫”政策前的年均脱贫率的()A.倍 B.倍 C.倍 D.倍10.已知正方体的棱长为1,平面与此正方体相交.对于实数,如果正方体的八个顶点中恰好有个点到平面的距离等于,那么下列结论中,一定正确的是A. B.C. D.11.在平面直角坐标系中,已知角的顶点与原点重合,始边与轴的非负半轴重合,终边落在直线上,则()A. B. C. D.12.已知单位向量,的夹角为,若向量,,且,则()A.2 B.2 C.4 D.6二、填空题:本题共4小题,每小题5分,共20分。13.点是曲线()图象上的一个定点,过点的切线方程为,则实数k的值为______.14.三对父子去参加亲子活动,坐在如图所示的6个位置上,有且仅有一对父子是相邻而坐的坐法有________种(比如:B与D、B与C是相邻的,A与D、C与D是不相邻的).15.如图,在平面四边形ABCD中,|AC|=3,|BD|=4,则(AB16.已知、为正实数,直线截圆所得的弦长为,则的最小值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设点,分别是椭圆的左、右焦点,为椭圆上任意一点,且的最小值为1.(1)求椭圆的方程;(2)如图,动直线与椭圆有且仅有一个公共点,点,是直线上的两点,且,,求四边形面积的最大值.18.(12分)如图,在平面直角坐标系中,椭圆的离心率为,且过点.求椭圆的方程;已知是椭圆的内接三角形,①若点为椭圆的上顶点,原点为的垂心,求线段的长;②若原点为的重心,求原点到直线距离的最小值.19.(12分)已知函数(),不等式的解集为.(1)求的值;(2)若,,,且,求的最大值.20.(12分)已知函数,其中.(Ⅰ)当时,求函数的单调区间;(Ⅱ)设,求证:;(Ⅲ)若对于恒成立,求的最大值.21.(12分)已知抛物线,直线与交于,两点,且.(1)求的值;(2)如图,过原点的直线与抛物线交于点,与直线交于点,过点作轴的垂线交抛物线于点,证明:直线过定点.22.(10分)在直角坐标系中,曲线的参数方程为(为参数).点在曲线上,点满足.(1)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,求动点的轨迹的极坐标方程;(2)点,分别是曲线上第一象限,第二象限上两点,且满足,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
根据三视图判断出几何体是由一个三棱锥和一个三棱柱构成,利用锥体和柱体的体积公式计算出体积并相加求得几何体的体积.【题目详解】由三视图可知该几何体的直观图是由一个三棱锥和三棱柱构成,该多面体体积为.故选D.【题目点拨】本小题主要考查三视图还原为原图,考查柱体和锥体的体积公式,属于基础题.2、D【解题分析】
将复数整理为的形式,分别判断四个选项即可得到结果.【题目详解】的虚部为,错误;,错误;,错误;,为纯虚数,正确本题正确选项:【题目点拨】本题考查复数的模长、实部与虚部、共轭复数、复数的分类的知识,属于基础题.3、B【解题分析】
根据复数的几何意义可知复数对应的点在以原点为圆心,1为半径的圆上,再根据复数的几何意义即可确定,即可得的最大值.【题目详解】由知,复数对应的点在以原点为圆心,1为半径的圆上,表示复数对应的点与点间的距离,又复数对应的点所在圆的圆心到的距离为1,所以.故选:B【题目点拨】本题考查了复数模的定义及其几何意义应用,属于基础题.4、B【解题分析】
由可得;由过点所作的圆的两条切线互相垂直可得,又焦点到双曲线渐近线的距离为,则,进而求解.【题目详解】,所以离心率,又圆是以为圆心,半径的圆,要使得经过点所作的圆的两条切线互相垂直,必有,而焦点到双曲线渐近线的距离为,所以,即,所以,所以双曲线的离心率的取值范围是.故选:B【题目点拨】本题考查双曲线的离心率的范围,考查双曲线的性质的应用.5、B【解题分析】命题p:,为,又为真命题的充分不必要条件为,故6、D【解题分析】
根据正弦定理得到,化简得到答案.【题目详解】由,得,∴,∴或,∴或.故选:【题目点拨】本题考查了正弦定理解三角形,意在考查学生的计算能力.7、C【解题分析】
画出直观图,由球的表面积公式求解即可【题目详解】这个几何体的直观图如图所示,它是由一个正方体中挖掉个球而形成的,所以它的表面积为.故选:C【题目点拨】本题考查三视图以及几何体的表面积的计算,考查空间想象能力和运算求解能力.8、C【解题分析】
根据复数代数形式的运算法则求出,再根据共轭复数的概念求解即可.【题目详解】解:∵,∴,则,∴,故选:C.【题目点拨】本题主要考查复数代数形式的运算法则,考查共轭复数的概念,属于基础题.9、B【解题分析】
设贫困户总数为,利用表中数据可得脱贫率,进而可求解.【题目详解】设贫困户总数为,脱贫率,所以.故年的年脱贫率是实施“精准扶贫”政策前的年均脱贫率的倍.故选:B【题目点拨】本题考查了概率与统计,考查了学生的数据处理能力,属于基础题.10、B【解题分析】
此题画出正方体模型即可快速判断m的取值.【题目详解】如图(1)恰好有3个点到平面的距离为;如图(2)恰好有4个点到平面的距离为;如图(3)恰好有6个点到平面的距离为.所以本题答案为B.【题目点拨】本题以空间几何体为载体考查点,面的位置关系,考查空间想象能力,考查了学生灵活应用知识分析解决问题的能力和知识方法的迁移能力,属于难题.11、C【解题分析】
利用诱导公式以及二倍角公式,将化简为关于的形式,结合终边所在的直线可知的值,从而可求的值.【题目详解】因为,且,所以.故选:C.【题目点拨】本题考查三角函数中的诱导公式以及三角恒等变换中的二倍角公式,属于给角求值类型的问题,难度一般.求解值的两种方法:(1)分别求解出的值,再求出结果;(2)将变形为,利用的值求出结果.12、C【解题分析】
根据列方程,由此求得的值,进而求得.【题目详解】由于,所以,即,解得.所以所以.故选:C【题目点拨】本小题主要考查向量垂直的表示,考查向量数量积的运算,考查向量模的求法,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解题分析】
求出导函数,由切线斜率为4即导数为4求出切点横坐标,再由切线方程得纵坐标后可求得.【题目详解】设,由题意,∴,,,即,∴,.故答案为:1.【题目点拨】本题考查导数的几何意义,函数图象某点处的切线的斜率就是该点处导数值.本题属于基础题.14、192【解题分析】
根据题意,分步进行分析:①,在三对父子中任选1对,安排在相邻的位置上,②,将剩下的4人安排在剩下的4个位置,要求父子不能坐在相邻的位置,由分步计数原理计算可得答案.【题目详解】根据题意,分步进行分析:①,在三对父子中任选1对,有3种选法,由图可得相邻的位置有4种情况,将选出的1对父子安排在相邻的位置,有种安排方法;②,将剩下的4人安排在剩下的4个位置,要求父子不能坐在相邻的位置,有种安排方法,则有且仅有一对父子是相邻而坐的坐法种;故答案为:【题目点拨】本题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题.15、-7【解题分析】
由题意得AB+【题目详解】由题意得ABBC+∴AB+【题目点拨】突破本题的关键是抓住题中所给图形的特点,利用平面向量基本定理和向量的加减运算,将所给向量统一用AC,16、【解题分析】
先根据弦长,半径,弦心距之间的关系列式求得,代入整理得,利用基本不等式求得最值.【题目详解】解:圆的圆心为,则到直线的距离为,由直线截圆所得的弦长为可得,整理得,解得或(舍去),令,又,当且仅当时,等号成立,则.故答案为:.【题目点拨】本题考查直线和圆的位置关系,考核基本不等式求最值,关键是对目标式进行变形,变成能用基本不等式求最值的形式,也可用换元法进行变形,是中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)2.【解题分析】
(1)利用的最小值为1,可得,,即可求椭圆的方程;(2)将直线的方程代入椭圆的方程中,得到关于的一元二次方程,由直线与椭圆仅有一个公共点知,即可得到,的关系式,利用点到直线的距离公式即可得到,.当时,设直线的倾斜角为,则,即可得到四边形面积的表达式,利用基本不等式的性质,结合当时,四边形是矩形,即可得出的最大值.【题目详解】(1)设,则,,,,由题意得,,椭圆的方程为;
(2)将直线的方程代入椭圆的方程中,得.
由直线与椭圆仅有一个公共点知,,化简得:.
设,,当时,设直线的倾斜角为,则,,,,∴当时,,,.当时,四边形是矩形,.
所以四边形面积的最大值为2.【题目点拨】本题主要考查椭圆的方程与性质、直线方程、直线与椭圆的位置关系、向量知识、二次函数的单调性、基本不等式的性质等基础知识,考查运算能力、推理论证以及分析问题、解决问题的能力,考查数形结合、化归与转化思想.18、;①;②.【解题分析】
根据题意列出方程组求解即可;①由原点为的垂心可得,轴,设,则,,根据求出线段的长;②设中点为,直线与椭圆交于,两点,为的重心,则,设:,,,则,当斜率不存在时,则到直线的距离为1,,由,则,,,得出,根据求解即可.【题目详解】解:设焦距为,由题意知:,因此,椭圆的方程为:;①由题意知:,故轴,设,则,,,解得:或,,不重合,故,,故;②设中点为,直线与椭圆交于,两点,为的重心,则,当斜率不存在时,则到直线的距离为1;设:,,,则,,则,则:,,代入式子得:,设到直线的距离为,则时,;综上,原点到直线距离的最小值为.【题目点拨】本题考查椭圆的方程的知识点,结合运用向量,韦达定理和点到直线的距离的知识,属于难题.19、(1)(2)32【解题分析】
利用绝对值不等式的解法求出不等式的解集,得到关于的方程,求出的值即可;由知可得,,利用三个正数的基本不等式,构造和是定值即可求出的最大值.【题目详解】(1)∵,,所以不等式的解集为,即为不等式的解集为,∴的解集为,即不等式的解集为,化简可得,不等式的解集为,所以,即.(2)∵,∴.又∵,,,∴,当且仅当,等号成立,即,,时,等号成立,∴的最大值为32.【题目点拨】本题主要考查含有两个绝对值不等式的解法和三个正数的基本不等式的灵活运用;其中利用构造出和为定值即为定值是求解本题的关键;基本不等式取最值的条件:一正二定三相等是本题的易错点;属于中档题.20、(Ⅰ)函数的单调增区间为,单调减区间为;(Ⅱ)证明见解析;(Ⅲ).【解题分析】
(Ⅰ)利用二次求导可得,所以在上为增函数,进而可得函数的单调增区间为,单调减区间为;(Ⅱ)利用导数可得在区间上存在唯一零点,所以函数在递减,在,递增,则,进而可证;(Ⅲ)条件等价于对于恒成立,构造函数,利用导数可得的单调性,即可得到的最小值为,再次构造函数(a),,利用导数得其单调区间,进而求得最大值.【题目详解】(Ⅰ)当时,,则,所以,又因为,所以在上为增函数,因为,所以当时,,为增函数,当时,,为减函数,即函数的单调增区间为,单调减区间为;(Ⅱ),则令,则(1),,所以在区间上存在唯一零点,设零点为,则,且,当时,,当,,,所以函数在递减,在,递增,,由,得,所以,由于,,从而;(Ⅲ)因为对于恒成立,即对于恒成立,不妨令,因为,,所以的解为,则当时,,为增函数,当时,,为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 团队建设管理培训40
- 中原地产-拓展客户与行销技巧
- 〈〈钱塘湖春行〉课件图
- 《我要健康成长》课件
- 《展会招商的技巧》课件
- 梵高-英文课件(在文辑中配有英文演讲稿)
- 低温预制食品智能化生产项目可行性研究报告模板-备案拿地
- 工学《动能 动能定理》课件设计
- 单位人力资源管理制度品读汇编十篇
- 单位管理制度展示汇编员工管理十篇
- 三年级上册语文期末考试作文押题预测
- 2025年首都机场集团招聘笔试参考题库含答案解析
- 2025年医院院感工作计划
- 中国珠宝市场发展报告(2019-2024)(中英)-中国珠宝玉石首饰行业协会
- 2024年陕西省安全员《A证》考试题库及答案
- 2024版新能源汽车购置补贴及服务保障合同3篇
- 2024-2025学年华东师大新版八年级上册数学期末复习试卷(含详解)
- 《praat使用入门》课件
- 供货进度计划及保证措施
- 医药销售主管市场规划
- 测量应急管理方案
评论
0/150
提交评论