山东省文登一中2024届高考最新原创信息试卷数学试题(八)_第1页
山东省文登一中2024届高考最新原创信息试卷数学试题(八)_第2页
山东省文登一中2024届高考最新原创信息试卷数学试题(八)_第3页
山东省文登一中2024届高考最新原创信息试卷数学试题(八)_第4页
山东省文登一中2024届高考最新原创信息试卷数学试题(八)_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省文登一中2024届高考最新原创信息试卷数学试题(八)注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线C的两条渐近线的夹角为60°,则双曲线C的方程不可能为()A. B. C. D.2.已知双曲线的左、右顶点分别为,点是双曲线上与不重合的动点,若,则双曲线的离心率为()A. B. C.4 D.23.做抛掷一枚骰子的试验,当出现1点或2点时,就说这次试验成功,假设骰子是质地均匀的.则在3次这样的试验中成功次数X的期望为()A.13 B.14.已知数列的通项公式是,则()A.0 B.55 C.66 D.785.的二项展开式中,的系数是()A.70 B.-70 C.28 D.-286.已知函数,若函数在上有3个零点,则实数的取值范围为()A. B. C. D.7.设集合,,则()A. B.C. D.8.已知函数,其中表示不超过的最大正整数,则下列结论正确的是()A.的值域是 B.是奇函数C.是周期函数 D.是增函数9.某几何体的三视图如图所示,则该几何体的体积为()A. B.3 C. D.410.以下四个命题:①两个随机变量的线性相关性越强,相关系数的绝对值越接近1;②在回归分析中,可用相关指数的值判断拟合效果,越小,模型的拟合效果越好;③若数据的方差为1,则的方差为4;④已知一组具有线性相关关系的数据,其线性回归方程,则“满足线性回归方程”是“,”的充要条件;其中真命题的个数为()A.4 B.3 C.2 D.111.若的展开式中的系数为150,则()A.20 B.15 C.10 D.2512.已知平面平面,且是正方形,在正方形内部有一点,满足与平面所成的角相等,则点的轨迹长度为()A. B.16 C. D.二、填空题:本题共4小题,每小题5分,共20分。13.(5分)某膳食营养科研机构为研究牛蛙体内的维生素E和锌、硒等微量元素(这些元素可以延缓衰老,还能起到抗癌的效果)对人体的作用,现从只雌蛙和只雄蛙中任选只牛蛙进行抽样试验,则选出的只牛蛙中至少有只雄蛙的概率是____________.14.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.如图,平行四边形形状的纸片是由六个边长为1的正三角形构成的,将它沿虚线折起来,可以得到如图所示粽子形状的六面体,则该六面体的体积为____;若该六面体内有一球,则该球体积的最大值为____.15.已知复数(为虚数单位)为纯虚数,则实数的值为_____.16.将含有甲、乙、丙的6人平均分成两组参加“文明交通”志愿者活动,其中一组指挥交通,一组分发宣传资料,则甲、乙至少一人参加指挥交通且甲、丙不在同一个组的概率为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在锐角中,分别是角的对边,,,且.(1)求角的大小;(2)求函数的值域.18.(12分)已知函数,(其中,).(1)求函数的最小值.(2)若,求证:.19.(12分)已知曲线的参数方程为为参数,曲线的参数方程为为参数).(1)求与的普通方程;(2)若与相交于,两点,且,求的值.20.(12分)[2018·石家庄一检]已知函数.(1)若,求函数的图像在点处的切线方程;(2)若函数有两个极值点,,且,求证:.21.(12分)的内角A,B,C的对边分别为a,b,c,已知,.求C;若,求,的面积22.(10分)已知函数,.(1)若函数在上单调递减,且函数在上单调递增,求实数的值;(2)求证:(,且).

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】

判断出已知条件中双曲线的渐近线方程,求得四个选项中双曲线的渐近线方程,由此确定选项.【题目详解】两条渐近线的夹角转化为双曲渐近线与轴的夹角时要分为两种情况.依题意,双曲渐近线与轴的夹角为30°或60°,双曲线的渐近线方程为或.A选项渐近线为,B选项渐近线为,C选项渐近线为,D选项渐近线为.所以双曲线的方程不可能为.故选:C【题目点拨】本小题主要考查双曲线的渐近线方程,属于基础题.2、D【解题分析】

设,,,根据可得①,再根据又②,由①②可得,化简可得,即可求出离心率.【题目详解】解:设,,,∵,∴,即,①又,②,由①②可得,∵,∴,∴,∴,即,故选:D.【题目点拨】本题考查双曲线的方程和性质,考查了斜率的计算,离心率的求法,属于基础题和易错题.3、C【解题分析】

每一次成功的概率为p=26=【题目详解】每一次成功的概率为p=26=13故选:C.【题目点拨】本题考查了二项分布求数学期望,意在考查学生的计算能力和应用能力.4、D【解题分析】

先分为奇数和偶数两种情况计算出的值,可进一步得到数列的通项公式,然后代入转化计算,再根据等差数列求和公式计算出结果.【题目详解】解:由题意得,当为奇数时,,当为偶数时,所以当为奇数时,;当为偶数时,,所以故选:D【题目点拨】此题考查数列与三角函数的综合问题,以及数列求和,考查了正弦函数的性质应用,等差数列的求和公式,属于中档题.5、A【解题分析】试题分析:由题意得,二项展开式的通项为,令,所以的系数是,故选A.考点:二项式定理的应用.6、B【解题分析】

根据分段函数,分当,,将问题转化为的零点问题,用数形结合的方法研究.【题目详解】当时,,令,在是增函数,时,有一个零点,当时,,令当时,,在上单调递增,当时,,在上单调递减,所以当时,取得最大值,因为在上有3个零点,所以当时,有2个零点,如图所示:所以实数的取值范围为综上可得实数的取值范围为,故选:B【题目点拨】本题主要考查了函数的零点问题,还考查了数形结合的思想和转化问题的能力,属于中档题.7、D【解题分析】

利用一元二次不等式的解法和集合的交运算求解即可.【题目详解】由题意知,集合,,由集合的交运算可得,.故选:D【题目点拨】本题考查一元二次不等式的解法和集合的交运算;考查运算求解能力;属于基础题.8、C【解题分析】

根据表示不超过的最大正整数,可构建函数图象,即可分别判断值域、奇偶性、周期性、单调性,进而下结论.【题目详解】由表示不超过的最大正整数,其函数图象为选项A,函数,故错误;选项B,函数为非奇非偶函数,故错误;选项C,函数是以1为周期的周期函数,故正确;选项D,函数在区间上是增函数,但在整个定义域范围上不具备单调性,故错误.故选:C【题目点拨】本题考查对题干的理解,属于函数新定义问题,可作出图象分析性质,属于较难题.9、C【解题分析】

首先把三视图转换为几何体,该几何体为由一个三棱柱体,切去一个三棱锥体,由柱体、椎体的体积公式进一步求出几何体的体积.【题目详解】解:根据几何体的三视图转换为几何体为:该几何体为由一个三棱柱体,切去一个三棱锥体,如图所示:故:.故选:C.【题目点拨】本题考查了由三视图求几何体的体积、需熟记柱体、椎体的体积公式,考查了空间想象能力,属于基础题.10、C【解题分析】

①根据线性相关性与r的关系进行判断,

②根据相关指数的值的性质进行判断,

③根据方差关系进行判断,

④根据点满足回归直线方程,但点不一定就是这一组数据的中心点,而回归直线必过样本中心点,可进行判断.【题目详解】①若两个随机变量的线性相关性越强,则相关系数r的绝对值越接近于1,故①正确;

②用相关指数的值判断模型的拟合效果,越大,模型的拟合效果越好,故②错误;

③若统计数据的方差为1,则的方差为,故③正确;

④因为点满足回归直线方程,但点不一定就是这一组数据的中心点,即,不一定成立,而回归直线必过样本中心点,所以当,时,点必满足线性回归方程;因此“满足线性回归方程”是“,”必要不充分条件.故④错误;

所以正确的命题有①③.

故选:C.【题目点拨】本题考查两个随机变量的相关性,拟合性检验,两个线性相关的变量间的方差的关系,以及两个变量的线性回归方程,注意理解每一个量的定义,属于基础题.11、C【解题分析】

通过二项式展开式的通项分析得到,即得解.【题目详解】由已知得,故当时,,于是有,则.故选:C【题目点拨】本题主要考查二项式展开式的通项和系数问题,意在考查学生对这些知识的理解掌握水平.12、C【解题分析】

根据与平面所成的角相等,判断出,建立平面直角坐标系,求得点的轨迹方程,由此求得点的轨迹长度.【题目详解】由于平面平面,且交线为,,所以平面,平面.所以和分别是直线与平面所成的角,所以,所以,即,所以.以为原点建立平面直角坐标系如下图所示,则,,设(点在第一象限内),由得,即,化简得,由于点在第一象限内,所以点的轨迹是以为圆心,半径为的圆在第一象限的部分.令代入原的方程,解得,故,由于,所以,所以点的轨迹长度为.故选:C【题目点拨】本小题主要考查线面角的概念和运用,考查动点轨迹方程的求法,考查空间想象能力和逻辑推理能力,考查数形结合的数学思想方法,属于难题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

记只雌蛙分别为,只雄蛙分别为,从中任选只牛蛙进行抽样试验,其基本事件为,共15个,选出的只牛蛙中至少有只雄蛙包含的基本事件为,共9个,故选出的只牛蛙中至少有只雄蛙的概率是.14、【解题分析】

(1)先算出正四面体的体积,六面体的体积是正四面体体积的倍,即可得出该六面体的体积;(2)由图形的对称性得,小球的体积要达到最大,即球与六个面都相切时,求出球的半径,再代入球的体积公式可得答案.【题目详解】(1)每个三角形面积是,由对称性可知该六面是由两个正四面合成的,可求出该四面体的高为,故四面体体积为,因此该六面体体积是正四面体的2倍,所以六面体体积是;(2)由图形的对称性得,小球的体积要达到最大,即球与六个面都相切时,由于图像的对称性,内部的小球要是体积最大,就是球要和六个面相切,连接球心和五个顶点,把六面体分成了六个三棱锥设球的半径为,所以,所以球的体积.故答案为:;.【题目点拨】本题考查由平面图形折成空间几何体、考查空间几何体的的表面积、体积计算,考查逻辑推理能力和空间想象能力求解球的体积关键是判断在什么情况下,其体积达到最大,考查运算求解能力.15、【解题分析】

利用复数的乘法求解再根据纯虚数的定义求解即可.【题目详解】解:复数为纯虚数,解得.故答案为:.【题目点拨】本题主要考查了根据复数为纯虚数求解参数的问题,属于基础题.16、【解题分析】

先求出总的基本事件数,再求出甲、乙至少一人参加指挥交通且甲、丙不在同一组的基本事件数,然后根据古典概型求解.【题目详解】6人平均分成两组参加“文明交通”志愿者活动,其中一组指挥交通,一组分发宣传资料的基本事件总数共有个,甲、乙至少一人参加指挥交通且甲、丙不在同一组的基本事件个数有:个,所以甲、乙至少一人参加指挥交通且甲、丙不在同一组的概率为.故答案为:【题目点拨】本题主要考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】

(1)由向量平行的坐标表示、正弦定理边化角和两角和差正弦公式可化简求得,进而得到;(2)利用两角和差余弦公式、二倍角和辅助角公式化简函数为,根据的范围可确定的范围,结合正弦函数图象可确定所求函数的值域.【题目详解】(1),,由正弦定理得:,即,,,,又,.(2)在锐角中,,..,,,,函数的值域为.【题目点拨】本题考查三角恒等变换、解三角形和三角函数性质的综合应用问题;涉及到共线向量的坐标表示、利用三角恒等变换公式化简求值、正弦定理边化角的应用、正弦型函数值域的求解等知识.18、(1).(2)答案见解析【解题分析】

(1)利用绝对值不等式的性质即可求得最小值;(2)利用分析法,只需证明,两边平方后结合即可得证.【题目详解】(1),当且仅当时取等号,∴的最小值;(2)证明:依题意,,要证,即证,即证,即证,即证,又可知,成立,故原不等式成立.【题目点拨】本题考查用绝对值三角不等式求最值,考查用分析法证明不等式,在不等式不易证明时,可通过执果索因的方法寻找结论成立的充分条件,完成证明,这就是分析法.19、(1),(2)0【解题分析】

(1)分别把两曲线参数方程中的参数消去,即可得到普通方程;(2)把直线的参数方程代入的普通方程,化为关于的一元二次方程,再由根与系数的关系及此时的几何意义求解.【题目详解】(1)由曲线的参数方程为为参数),消去参数,可得;由曲线的参数方程为为参数),消去参数,可得,即.(2)把为参数)代入,得.,..解得:,即,满足△..【题目点拨】本题考查参数方程化普通方程,特别是直线参数方程中参数的几何意义的应用,是中档题.20、(1)(2)见解析【解题分析】试题分析:(1)分别求得和,由点斜式可得切线方程;(2)由已知条件可得有两个相异实根,,进而再求导可得,结合函数的单调性可得,从而得证.试题解析:(1)由已知条件,,当时,,,当时,,所以所求切线方程为(2)由已知条件可得有两个相异实根,,令,则,1)若,则,单调递增,不可能有两根;2)若,令得,可知在上单调递增,在上单调递减,令解得,由有,由有,从而时函数有两个极值点,当变化时,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论