版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省扬州、泰州、淮安、南通、徐州、宿迁、连云港市高考适应性月考卷(四)数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.抛物线的焦点为,点是上一点,,则()A. B. C. D.2.要得到函数的图像,只需把函数的图像()A.向左平移个单位 B.向左平移个单位C.向右平移个单位 D.向右平移个单位3.设等比数列的前项和为,则“”是“”的()A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要4.下列选项中,说法正确的是()A.“”的否定是“”B.若向量满足,则与的夹角为钝角C.若,则D.“”是“”的必要条件5.若(),,则()A.0或2 B.0 C.1或2 D.16.如图,在三棱柱中,底面为正三角形,侧棱垂直底面,.若分别是棱上的点,且,,则异面直线与所成角的余弦值为()A. B. C. D.7.已知函数()的最小值为0,则()A. B. C. D.8.若直线l不平行于平面α,且l⊄α,则()A.α内所有直线与l异面B.α内只存在有限条直线与l共面C.α内存在唯一的直线与l平行D.α内存在无数条直线与l相交9.下列函数中,在区间上单调递减的是()A. B. C. D.10.在平面直角坐标系中,已知点,,若动点满足,则的取值范围是()A. B.C. D.11.若与互为共轭复数,则()A.0 B.3 C.-1 D.412.对于正在培育的一颗种子,它可能1天后发芽,也可能2天后发芽,….下表是20颗不同种子发芽前所需培育的天数统计表,则这组种子发芽所需培育的天数的中位数是()发芽所需天数1234567种子数43352210A.2 B.3 C.3.5 D.4二、填空题:本题共4小题,每小题5分,共20分。13.曲线在点处的切线方程为__.14.(5分)某膳食营养科研机构为研究牛蛙体内的维生素E和锌、硒等微量元素(这些元素可以延缓衰老,还能起到抗癌的效果)对人体的作用,现从只雌蛙和只雄蛙中任选只牛蛙进行抽样试验,则选出的只牛蛙中至少有只雄蛙的概率是____________.15.“今有女善织,日益功疾,初日织五尺,今一月共织九匹三丈.”其白话意译为:“现有一善织布的女子,从第2天开始,每天比前一天多织相同数量的布,第一天织了5尺布,现在一个月(按30天计算)共织布390尺.”则每天增加的数量为____尺,设该女子一个月中第n天所织布的尺数为,则______.16.设等差数列的前项和为,若,,则数列的公差________,通项公式________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆()的离心率为,且经过点.(1)求椭圆的方程;(2)过点作直线与椭圆交于不同的两点,,试问在轴上是否存在定点使得直线与直线恰关于轴对称?若存在,求出点的坐标;若不存在,说明理由.18.(12分)如图在直角中,为直角,,,分别为,的中点,将沿折起,使点到达点的位置,连接,,为的中点.(Ⅰ)证明:面;(Ⅱ)若,求二面角的余弦值.19.(12分)已知矩阵的一个特征值为3,求另一个特征值及其对应的一个特征向量.20.(12分)设复数满足(为虚数单位),则的模为______.21.(12分)如图,在正四棱锥中,底面正方形的对角线交于点且(1)求直线与平面所成角的正弦值;(2)求锐二面角的大小.22.(10分)设椭圆:的左、右焦点分别为,,下顶点为,椭圆的离心率是,的面积是.(1)求椭圆的标准方程.(2)直线与椭圆交于,两点(异于点),若直线与直线的斜率之和为1,证明:直线恒过定点,并求出该定点的坐标.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
根据抛物线定义得,即可解得结果.【题目详解】因为,所以.故选B【题目点拨】本题考查抛物线定义,考查基本分析求解能力,属基础题.2、A【解题分析】
运用辅助角公式将两个函数公式进行变形得以及,按四个选项分别对变形,整理后与对比,从而可选出正确答案.【题目详解】解:.对于A:可得.故选:A.【题目点拨】本题考查了三角函数图像平移变换,考查了辅助角公式.本题的易错点有两个,一个是混淆了已知函数和目标函数;二是在平移时,忘记乘了自变量前的系数.3、A【解题分析】
首先根据等比数列分别求出满足,的基本量,根据基本量的范围即可确定答案.【题目详解】为等比数列,若成立,有,因为恒成立,故可以推出且,若成立,当时,有,当时,有,因为恒成立,所以有,故可以推出,,所以“”是“”的充分不必要条件.故选:A.【题目点拨】本题主要考查了等比数列基本量的求解,充分必要条件的集合关系,属于基础题.4、D【解题分析】
对于A根据命题的否定可得:“∃x0∈R,x02-x0≤0”的否定是“∀x∈R,x2-x>0”,即可判断出;对于B若向量满足,则与的夹角为钝角或平角;对于C当m=0时,满足am2≤bm2,但是a≤b不一定成立;对于D根据元素与集合的关系即可做出判断.【题目详解】选项A根据命题的否定可得:“∃x0∈R,x02-x0≤0”的否定是“∀x∈R,x2-x>0”,因此A不正确;选项B若向量满足,则与的夹角为钝角或平角,因此不正确.选项C当m=0时,满足am2≤bm2,但是a≤b不一定成立,因此不正确;选项D若“”,则且,所以一定可以推出“”,因此“”是“”的必要条件,故正确.故选:D.【题目点拨】本题考查命题的真假判断与应用,涉及知识点有含有量词的命题的否定、不等式性质、向量夹角与性质、集合性质等,属于简单题.5、A【解题分析】
利用复数的模的运算列方程,解方程求得的值.【题目详解】由于(),,所以,解得或.故选:A【题目点拨】本小题主要考查复数模的运算,属于基础题.6、B【解题分析】
建立空间直角坐标系,利用向量法计算出异面直线与所成角的余弦值.【题目详解】依题意三棱柱底面是正三角形且侧棱垂直于底面.设的中点为,建立空间直角坐标系如下图所示.所以,所以.所以异面直线与所成角的余弦值为.故选:B【题目点拨】本小题主要考查异面直线所成的角的求法,属于中档题.7、C【解题分析】
设,计算可得,再结合图像即可求出答案.【题目详解】设,则,则,由于函数的最小值为0,作出函数的大致图像,结合图像,,得,所以.故选:C【题目点拨】本题主要考查了分段函数的图像与性质,考查转化思想,考查数形结合思想,属于中档题.8、D【解题分析】
通过条件判断直线l与平面α相交,于是可以判断ABCD的正误.【题目详解】根据直线l不平行于平面α,且l⊄α可知直线l与平面α相交,于是ABC错误,故选D.【题目点拨】本题主要考查直线与平面的位置关系,直线与直线的位置关系,难度不大.9、C【解题分析】
由每个函数的单调区间,即可得到本题答案.【题目详解】因为函数和在递增,而在递减.故选:C【题目点拨】本题主要考查常见简单函数的单调区间,属基础题.10、D【解题分析】
设出的坐标为,依据题目条件,求出点的轨迹方程,写出点的参数方程,则,根据余弦函数自身的范围,可求得结果.【题目详解】设,则∵,∴∴∴为点的轨迹方程∴点的参数方程为(为参数)则由向量的坐标表达式有:又∵∴故选:D【题目点拨】考查学生依据条件求解各种轨迹方程的能力,熟练掌握代数式转换,能够利用三角换元的思想处理轨迹中的向量乘积,属于中档题.求解轨迹方程的方法有:①直接法;②定义法;③相关点法;④参数法;⑤待定系数法11、C【解题分析】
计算,由共轭复数的概念解得即可.【题目详解】,又由共轭复数概念得:,.故选:C【题目点拨】本题主要考查了复数的运算,共轭复数的概念.12、C【解题分析】
根据表中数据,即可容易求得中位数.【题目详解】由图表可知,种子发芽天数的中位数为,故选:C.【题目点拨】本题考查中位数的计算,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
对函数求导后,代入切点的横坐标得到切线斜率,然后根据直线方程的点斜式,即可写出切线方程.【题目详解】因为,所以,从而切线的斜率,所以切线方程为,即.故答案为:【题目点拨】本题主要考查过曲线上一点的切线方程的求法,属基础题.14、【解题分析】
记只雌蛙分别为,只雄蛙分别为,从中任选只牛蛙进行抽样试验,其基本事件为,共15个,选出的只牛蛙中至少有只雄蛙包含的基本事件为,共9个,故选出的只牛蛙中至少有只雄蛙的概率是.15、52【解题分析】
设从第2天开始,每天比前一天多织尺布,由等差数列前项和公式求出,由此利用等差数列通项公式能求出.【题目详解】设从第2天开始,每天比前一天多织d尺布,
则,
解得,即每天增加的数量为,
,故答案为,52.【题目点拨】本题主要考查等差数列的通项公式、等差数列的求和公式,意在考查利用所学知识解决问题的能力,属于中档题.16、2【解题分析】
直接利用等差数列公式计算得到答案.【题目详解】,,解得,,故.故答案为:2;.【题目点拨】本题考查了等差数列的基本计算,意在考查学生的计算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)见解析【解题分析】
(1)由题得a,b,c的方程组求解即可(2)直线与直线恰关于轴对称,等价于的斜率互为相反数,即,整理.设直线的方程为,与椭圆联立,将韦达定理代入整理即可.【题目详解】(1)由题意可得,,又,解得,.所以,椭圆的方程为(2)存在定点,满足直线与直线恰关于轴对称.设直线的方程为,与椭圆联立,整理得,.设,,定点.(依题意则由韦达定理可得,,.直线与直线恰关于轴对称,等价于的斜率互为相反数.所以,,即得.又,,所以,,整理得,.从而可得,,即,所以,当,即时,直线与直线恰关于轴对称成立.特别地,当直线为轴时,也符合题意.综上所述,存在轴上的定点,满足直线与直线恰关于轴对称.【题目点拨】本题考查椭圆方程,直线与椭圆位置关系,熟记椭圆方程简单性质,熟练转化题目条件,准确计算是关键,是中档题.18、(Ⅰ)详见解析;(Ⅱ).【解题分析】
(Ⅰ)取中点,连结、,四边形是平行四边形,由,,得,从而,,求出,由此能证明.(Ⅱ)以为原点,、、所在直线分别为,,轴,建立空间直角坐标系,利用向量法能求出二面角的余弦值.【题目详解】证明:(Ⅰ)取中点,连结、,∵,,∴四边形是平行四边形,∵,,,∴,∴,∴,在中,,又∵为的中点,∴,又∵,∴.解:(Ⅱ)∵,,,∴,以为原点,、、所在直线分别为,,轴,建立空间直角坐标系,设,则,,,,∴,,,设面的法向量,则,取,得,同理,得平面的法向量,设二面角的平面角为,则,∴二面角的余弦值为.【题目点拨】本题考查面面垂直及线面垂直性质定理、线面垂直判定与性质定理以及利用空间向量求线面角与二面角,考查基本分析求解能力,属中档题.19、另一个特征值为,对应的一个特征向量【解题分析】
根据特征多项式的一个零点为3,可得,再回代到方程即可解出另一个特征值为,最后利用求特征向量的一般步骤,可求出其对应的一个特征向量.【题目详解】矩阵的特征多项式为:,是方程的一个根,,解得,即方程即,,可得另一个特征值为:,设对应的一个特征向量为:则由,得得,令,则,所以矩阵另一个特征值为,对应的一个特征向量【题目点拨】本题考查了矩阵的特征值以及特征向量,需掌握特征多项式的计算形式,属于基础题.20、1【解题分析】
整理已知利用复数的除法运算方式计算,再由求模公式得答案.【题目详解】因为,即所以的模为1故答案为:1【题目点拨】本题考查复数的除法运算与求模,属于基础题.21、(1);(2).【解题分析】
(1)以分别为轴,轴,轴,建立空间直角坐标系,设底面正方形边长为再求解与平面的法向量,继而求得直线与平面所成角的正弦值即可.(2)分别求解平面与平面的法向量,再求二面角的余弦值判断二面角大小即可.【题目详解】解:在正四棱锥中,底面正方形的对角线交于点所以平面取的中点的中点所以两两垂直,故以点为坐标原点,以分别为轴,轴,轴,建立空间直角坐标系.设底面正方形边长为因为所以所以,所以,设平面的法向量是,因为,,所以,,取则,所以所以,所以直线与平面所成角的正弦值为.设平面的法向量是,因为,,所以,取则所以,由知平面的法向量是,所以所以,所以锐二面角的大小为.【题目点拨】本题主要考查了建立平面直角坐标系求解线面夹角以及二面角的问题,属于中档题.22、(1);(2)证明见解析,.【解题分析】
(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工程施工合同当中的质量检验标准约定
- 《薄层层析柱层析》课件
- 2025年临汾货物运输驾驶员从业资格考试系统
- 2025年汉中道路货运驾驶员从业资格证考试
- 《行政许可范围制度》课件
- 住宅小区施工备案委托协议
- 排水系统工程合同协议书范本
- 长期购销合同变更问题
- 花卉园艺设备租赁合同
- 舞台表演音响租赁合同范本
- 《富马酸卢帕他定口崩片关键质量属性与标准研究》
- 走近非遗 课件 2024-2025学年湘美版(2024)初中美术七年级上册
- 新生儿坏死性小肠结肠炎临床诊疗指南解读 课件
- 网络数据安全管理条例
- 2024版2024年【人教版】二年级上册《道德与法治》全册教案
- 2024年浙江省单独招生文化考试语文试卷(含答案详解)
- 山东省泰安市2024届高三上学期期末数学试题(含答案解析)
- 少儿编程获奖课件
- 2024年《风力发电原理》基础技能及理论知识考试题库与答案
- 软件开发项目监理细则
- (必会)军队文职(药学)近年考试真题题库(含答案解析)
评论
0/150
提交评论