版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古翁牛特旗乌丹二中2024届高三模拟(最后一次)数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的图像大致为()A. B.C. D.2.已知是偶函数,在上单调递减,,则的解集是A. B.C. D.3.设且,则下列不等式成立的是()A. B. C. D.4.一个正三棱柱的正(主)视图如图,则该正三棱柱的侧面积是()A.16 B.12 C.8 D.65.如图,在中,点为线段上靠近点的三等分点,点为线段上靠近点的三等分点,则()A. B. C. D.6.已知复数z=2i1-i,则A.第一象限 B.第二象限 C.第三象限 D.第四象限7.已知二次函数的部分图象如图所示,则函数的零点所在区间为()A. B. C. D.8.设,是非零向量,若对于任意的,都有成立,则A. B. C. D.9.已知平面平面,且是正方形,在正方形内部有一点,满足与平面所成的角相等,则点的轨迹长度为()A. B.16 C. D.10.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是()A. B. C. D.11.已知某批零件的长度误差(单位:毫米)服从正态分布,从中随机取一件,其长度误差落在区间(3,6)内的概率为()(附:若随机变量ξ服从正态分布,则,.)A.4.56% B.13.59% C.27.18% D.31.74%12.已知定义在R上的函数(m为实数)为偶函数,记,,则a,b,c的大小关系为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.曲线在点处的切线方程为__.14.抛物线的焦点坐标为______.15.某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,再次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为0.5、0.6、0.4,经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为0.6、0.5、0.75;则第一次烧制后恰有一件产品合格的概率为________;经过前后两次烧制后,合格工艺品的件数为,则随机变量的期望为________.16.在四面体中,分别是的中点.则下述结论:①四面体的体积为;②异面直线所成角的正弦值为;③四面体外接球的表面积为;④若用一个与直线垂直,且与四面体的每个面都相交的平面去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为.其中正确的有_____.(填写所有正确结论的编号)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(Ⅰ)当时,求不等式的解集;(Ⅱ)若不等式对任意实数恒成立,求实数的取值范围.18.(12分)在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程和曲线的直角坐标方程;(2)若点在曲线上,点在曲线上,求的最小值及此时点的坐标.19.(12分)如图,直三棱柱中,底面为等腰直角三角形,,,,分别为,的中点,为棱上一点,若平面.(1)求线段的长;(2)求二面角的余弦值.20.(12分)追求人类与生存环境的和谐发展是中国特色社会主义生态文明的价值取向.为了改善空气质量,某城市环保局随机抽取了一年内100天的空气质量指数(AQI)的检测数据,结果统计如表:AQI空气质量优良轻度污染中度污染重度污染重度污染天数61418272510(1)从空气质量指数属于[0,50],(50,100]的天数中任取3天,求这3天中空气质量至少有2天为优的概率;(2)已知某企业每天因空气质量造成的经济损失y(单位:元)与空气质量指数x的关系式为,假设该企业所在地7月与8月每天空气质量为优、良、轻度污染、中度污染、重度污染、严重污染的概率分别为.9月每天的空气质量对应的概率以表中100天的空气质量的频率代替.(i)记该企业9月每天因空气质量造成的经济损失为X元,求X的分布列;(ii)试问该企业7月、8月、9月这三个月因空气质量造成的经济损失总额的数学期望是否会超过2.88万元?说明你的理由.21.(12分)等差数列中,,,分别是下表第一、二、三行中的某一个数,且其中的任何两个数不在下表的同一列.第一列第二列第三列第一行582第二行4312第三行1669(1)请选择一个可能的组合,并求数列的通项公式;(2)记(1)中您选择的的前项和为,判断是否存在正整数,使得,,成等比数列,若有,请求出的值;若没有,请说明理由.22.(10分)已知函数.(Ⅰ)解不等式;(Ⅱ)设其中为常数.若方程在上恰有两个不相等的实数根,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
根据排除,,利用极限思想进行排除即可.【题目详解】解:函数的定义域为,恒成立,排除,,当时,,当,,排除,故选:.【题目点拨】本题主要考查函数图象的识别和判断,利用函数值的符号以及极限思想是解决本题的关键,属于基础题.2、D【解题分析】
先由是偶函数,得到关于直线对称;进而得出单调性,再分别讨论和,即可求出结果.【题目详解】因为是偶函数,所以关于直线对称;因此,由得;又在上单调递减,则在上单调递增;所以,当即时,由得,所以,解得;当即时,由得,所以,解得;因此,的解集是.【题目点拨】本题主要考查由函数的性质解对应不等式,熟记函数的奇偶性、对称性、单调性等性质即可,属于常考题型.3、A【解题分析】项,由得到,则,故项正确;项,当时,该不等式不成立,故项错误;项,当,时,,即不等式不成立,故项错误;项,当,时,,即不等式不成立,故项错误.综上所述,故选.4、B【解题分析】
根据正三棱柱的主视图,以及长度,可知该几何体的底面正三角形的边长,然后根据矩形的面积公式,可得结果.【题目详解】由题可知:该几何体的底面正三角形的边长为2所以该正三棱柱的三个侧面均为边长为2的正方形,所以该正三棱柱的侧面积为故选:B【题目点拨】本题考查正三棱柱侧面积的计算以及三视图的认识,关键在于求得底面正三角形的边长,掌握一些常见的几何体的三视图,比如:三棱锥,圆锥,圆柱等,属基础题.5、B【解题分析】
,将,代入化简即可.【题目详解】.故选:B.【题目点拨】本题考查平面向量基本定理的应用,涉及到向量的线性运算、数乘运算,考查学生的运算能力,是一道中档题.6、C【解题分析】分析:根据复数的运算,求得复数z,再利用复数的表示,即可得到复数对应的点,得到答案.详解:由题意,复数z=2i1-i所以复数z在复平面内对应的点的坐标为(-1,-1),位于复平面内的第三象限,故选C.点睛:本题主要考查了复数的四则运算及复数的表示,其中根据复数的四则运算求解复数z是解答的关键,着重考查了推理与运算能力.7、B【解题分析】由函数f(x)的图象可知,0<f(0)=a<1,f(1)=1-b+a=0,所以1<b<2.又f′(x)=2x-b,所以g(x)=ex+2x-b,所以g′(x)=ex+2>0,所以g(x)在R上单调递增,又g(0)=1-b<0,g(1)=e+2-b>0,根据函数的零点存在性定理可知,函数g(x)的零点所在的区间是(0,1),故选B.8、D【解题分析】
画出,,根据向量的加减法,分别画出的几种情况,由数形结合可得结果.【题目详解】由题意,得向量是所有向量中模长最小的向量,如图,当,即时,最小,满足,对于任意的,所以本题答案为D.【题目点拨】本题主要考查了空间向量的加减法,以及点到直线的距离最短问题,解题的关键在于用有向线段正确表示向量,属于基础题.9、C【解题分析】
根据与平面所成的角相等,判断出,建立平面直角坐标系,求得点的轨迹方程,由此求得点的轨迹长度.【题目详解】由于平面平面,且交线为,,所以平面,平面.所以和分别是直线与平面所成的角,所以,所以,即,所以.以为原点建立平面直角坐标系如下图所示,则,,设(点在第一象限内),由得,即,化简得,由于点在第一象限内,所以点的轨迹是以为圆心,半径为的圆在第一象限的部分.令代入原的方程,解得,故,由于,所以,所以点的轨迹长度为.故选:C【题目点拨】本小题主要考查线面角的概念和运用,考查动点轨迹方程的求法,考查空间想象能力和逻辑推理能力,考查数形结合的数学思想方法,属于难题.10、D【解题分析】
根据三视图判断出几何体为正四棱锥,由此计算出几何体的表面积.【题目详解】根据三视图可知,该几何体为正四棱锥.底面积为.侧面的高为,所以侧面积为.所以该几何体的表面积是.故选:D【题目点拨】本小题主要考查由三视图判断原图,考查锥体表面积的计算,属于基础题.11、B【解题分析】试题分析:由题意故选B.考点:正态分布12、B【解题分析】
根据f(x)为偶函数便可求出m=0,从而f(x)=﹣1,根据此函数的奇偶性与单调性即可作出判断.【题目详解】解:∵f(x)为偶函数;∴f(﹣x)=f(x);∴﹣1=﹣1;∴|﹣x﹣m|=|x﹣m|;(﹣x﹣m)2=(x﹣m)2;∴mx=0;∴m=0;∴f(x)=﹣1;∴f(x)在[0,+∞)上单调递增,并且a=f(||)=f(),b=f(),c=f(2);∵0<<2<;∴a<c<b.故选B.【题目点拨】本题考查偶函数的定义,指数函数的单调性,对于偶函数比较函数值大小的方法就是将自变量的值变到区间[0,+∞)上,根据单调性去比较函数值大小.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
对函数求导后,代入切点的横坐标得到切线斜率,然后根据直线方程的点斜式,即可写出切线方程.【题目详解】因为,所以,从而切线的斜率,所以切线方程为,即.故答案为:【题目点拨】本题主要考查过曲线上一点的切线方程的求法,属基础题.14、【解题分析】
变换得到,计算焦点得到答案.【题目详解】抛物线的标准方程为,,所以焦点坐标为.故答案为:【题目点拨】本题考查了抛物线的焦点坐标,属于简单题.15、0.380.9【解题分析】
考虑恰有一件的三种情况直接计算得到概率,随机变量的可能取值为,计算得到概率,再计算数学期望得到答案.【题目详解】第一次烧制后恰有一件产品合格的概率为:.甲、乙、丙三件产品合格的概率分别为:,,.故随机变量的可能取值为,故;;;.故.故答案为:0.38;0.9.【题目点拨】本题考查了概率的计算,数学期望,意在考查学生的计算能力和应用能力.16、①③④.【解题分析】
补图成长方体,在长方体中利用割补法求四面体的体积,和外接球的表面积,以及异面直线的夹角,作出截面即可计算截面面积的最值.【题目详解】根据四面体特征,可以补图成长方体设其边长为,,解得补成长,宽,高分别为的长方体,在长方体中:①四面体的体积为,故正确②异面直线所成角的正弦值等价于边长为的矩形的对角线夹角正弦值,可得正弦值为,故错;③四面体外接球就是长方体的外接球,半径,其表面积为,故正确;④由于,故截面为平行四边形,可得,设异面直线与所成的角为,则,算得,.故正确.故答案为:①③④.【题目点拨】此题考查根据几何体求体积,外接球的表面积,异面直线夹角和截面面积最值,关键在于熟练掌握点线面位置关系的处理方法,补图法作为解决体积和外接球问题的常用方法,平常需要积累常见几何体的补图方法.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解题分析】试题分析:(Ⅰ)分三种情况讨论,分别求解不等式组,然后求并集即可得不等式的解集;(Ⅱ)根据绝对值不等式的性质可得,不等式对任意实数恒成立,等价于,解不等式即可求的取值范围.试题解析:(Ⅰ)当时,即,①当时,得,所以;②当时,得,即,所以;③当时,得成立,所以.故不等式的解集为.(Ⅱ)因为,由题意得,则,解得,故的取值范围是.18、(1);(2)最小值为,此时【解题分析】
(1)消去曲线参数方程的参数,求得曲线的普通方程.利用极坐标和直角坐标相互转化公式,求得曲线的直角坐标方程.(2)设出的坐标,结合点到直线的距离公式以及三角函数最值的求法,求得的最小值及此时点的坐标.【题目详解】(1)消去得,曲线的普通方程是:;把,代入得,曲线的直角坐标方程是(2)设,的最小值就是点到直线的最小距离.设在时,,是最小值,此时,所以,所求最小值为,此时【题目点拨】本小题主要考查参数方程化为普通方程,考查极坐标方程转化为直角坐标方程,考查利用圆锥曲线的参数求最值,属于中档题.19、(1)(2)【解题分析】
(1)先证得,设与交于点,在中解直角三角形求得,由此求得的值.(2)建立空间直角坐标系,利用平面和平面的法向量,计算出二面角的余弦值.【题目详解】(1)由题意,,设与交于点,在中,可求得,则,可求得,则(2)以为原点,方向为轴,方向为轴,方向为轴,建立空间直角坐标系.,,,,,易得平面的法向量为.,,易得平面的法向量为.设二面角为,由图可知为锐角,所以.即二面角的余弦值为.【题目点拨】本小题主要考查根据线面垂直求边长,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.20、(1);(2)(i)详见解析;(ii)会超过;详见解析【解题分析】
(1)利用组合进行计算以及概率表示,可得结果.(2)(i)写出X所有可能取值,并计算相对应的概率,列出表格可得结果.(ii)由(i)的条件结合7月与8月空气质量所对应的概率,可得7月与8月经济损失的期望和,最后7月、8月、9月经济损失总额的数学期望与2.88万元比较,可得结果.【题目详解】(1)设ξ为选取的3天中空气质量为优的天数,则P(ξ=2),P(ξ=3),则这3天中空气质量至少有2天为优的概率为;(2)(i),,,X的分布列如下:X02201480P(ii)由(i)可得:E(X)=02201480302(元),故该企业9月的经济损失的数学期望为30E(X),即30E(X)=9060元,设7月、8月每天因空气质量造成的经济损失为Y元,可得:,,,E(Y)=02201480320(元),所以该企业7月、8月这两个月因空气质量造成经济损失总额的数学期望为320×(31+31)=19840(元),由19840+9060=28900>28800,即7月、8月
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 供应链运营 教案项目六 供应链绩效管理
- 无碱玻璃纤维短切丝编制说明
- 2024年广东省深圳市中考英语模拟试卷(一)
- 上海市市辖区(2024年-2025年小学五年级语文)统编版竞赛题(上学期)试卷及答案
- 上海市县(2024年-2025年小学五年级语文)统编版期中考试((上下)学期)试卷及答案
- 卫生计生文化艺术联合会个人会员入会申请登记表
- 增值税附加税税率培训
- 首届文化创作节活动方案
- 职业学院船舶通信与导航专业人才培养方案
- 排球网标志杆产品供应链分析
- 化工设计概论(第二版)完整版课件(全)
- 新药药效学研究方法和技术要求
- 资料员岗位培训ppt课件(PPT 36页)
- 团务知识培训课件
- 危险源辨识与风险评价记录文本表
- 中国人民财产保险股份有限公司雇主责任保险条款(2004版)
- 煤矿建设项目安全设施设计审查和竣工验收规范
- 风力灭火机操作使用教案
- GB-Z19579—2012卓越绩效评价准则实施指引
- ISO50001能源管理体系简介(课堂PPT)
- (完整版)小学一年级10以内数的分解与组合练习题.doc
评论
0/150
提交评论