云南省曲靖市富源县二中2024届高三第一次联考数学试题_第1页
云南省曲靖市富源县二中2024届高三第一次联考数学试题_第2页
云南省曲靖市富源县二中2024届高三第一次联考数学试题_第3页
云南省曲靖市富源县二中2024届高三第一次联考数学试题_第4页
云南省曲靖市富源县二中2024届高三第一次联考数学试题_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省曲靖市富源县二中2024届高三第一次联考数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,集合,则().A. B.C. D.2.若,则函数在区间内单调递增的概率是()A.B.C.D.3.如图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.则下列结论中表述不正确的是()A.从2000年至2016年,该地区环境基础设施投资额逐年增加;B.2011年该地区环境基础设施的投资额比2000年至2004年的投资总额还多;C.2012年该地区基础设施的投资额比2004年的投资额翻了两番;D.为了预测该地区2019年的环境基础设施投资额,根据2010年至2016年的数据(时间变量t的值依次为)建立了投资额y与时间变量t的线性回归模型,根据该模型预测该地区2019的环境基础设施投资额为256.5亿元.4.已知是虚数单位,若,,则实数()A.或 B.-1或1 C.1 D.5.已知表示两条不同的直线,表示两个不同的平面,且则“”是“”的()条件.A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要6.盒中有6个小球,其中4个白球,2个黑球,从中任取个球,在取出的球中,黑球放回,白球则涂黑后放回,此时盒中黑球的个数,则()A., B.,C., D.,7.如图所示是某年第一季度五省GDP情况图,则下列说法中不正确的是()A.该年第一季度GDP增速由高到低排位第3的是山东省B.与去年同期相比,该年第一季度的GDP总量实现了增长C.该年第一季度GDP总量和增速由高到低排位均居同一位的省份有2个D.去年同期浙江省的GDP总量超过了4500亿元8.在钝角中,角所对的边分别为,为钝角,若,则的最大值为()A. B. C.1 D.9.复数的共轭复数对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.若等差数列的前项和为,且,,则的值为().A.21 B.63 C.13 D.8411.下列函数中,在区间上单调递减的是()A. B. C. D.12.复数的共轭复数在复平面内所对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题:本题共4小题,每小题5分,共20分。13.已知函数的图象在处的切线斜率为,则______.14.已知函数,则________;满足的的取值范围为________.15.已知函数恰好有3个不同的零点,则实数的取值范围为____16.展开式中项的系数是__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是是参数),若直线与圆相切,求实数的值.18.(12分)本小题满分14分)已知曲线的极坐标方程为,以极点为原点,极轴为轴的非负半轴建立平面直角坐标系,直线的参数方程为(为参数),求直线被曲线截得的线段的长度19.(12分)已知在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴非负半轴为极轴建立极坐标系,曲线的极坐标方程为,点的极坐标为.(1)求直线的极坐标方程;(2)若直线与曲线交于,两点,求的面积.20.(12分)已知函数,且曲线在处的切线方程为.(1)求的极值点与极值.(2)当,时,证明:.21.(12分)设数列的前n项和满足,,,(1)证明:数列是等差数列,并求其通项公式﹔(2)设,求证:.22.(10分)如图,已知四边形的直角梯形,∥BC,,,,为线段的中点,平面,,为线段上一点(不与端点重合).(1)若,(ⅰ)求证:PC∥平面;(ⅱ)求平面与平面所成的锐二面角的余弦值;(2)否存在实数满足,使得直线与平面所成的角的正弦值为,若存在,确定的值,若不存在,请说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

算出集合A、B及,再求补集即可.【题目详解】由,得,所以,又,所以,故或.故选:A.【题目点拨】本题考查集合的交集、补集运算,考查学生的基本运算能力,是一道基础题.2、B【解题分析】函数在区间内单调递增,,在恒成立,在恒成立,,函数在区间内单调递增的概率是,故选B.3、D【解题分析】

根据图像所给的数据,对四个选项逐一进行分析排除,由此得到表述不正确的选项.【题目详解】对于选项,由图像可知,投资额逐年增加是正确的.对于选项,投资总额为亿元,小于年的亿元,故描述正确.年的投资额为亿,翻两翻得到,故描述正确.对于选项,令代入回归直线方程得亿元,故选项描述不正确.所以本题选D.【题目点拨】本小题主要考查图表分析能力,考查利用回归直线方程进行预测的方法,属于基础题.4、B【解题分析】

由题意得,,然后求解即可【题目详解】∵,∴.又∵,∴,∴.【题目点拨】本题考查复数的运算,属于基础题5、B【解题分析】

根据充分必要条件的概念进行判断.【题目详解】对于充分性:若,则可以平行,相交,异面,故充分性不成立;若,则可得,必要性成立.故选:B【题目点拨】本题主要考查空间中线线,线面,面面的位置关系,以及充要条件的判断,考查学生综合运用知识的能力.解决充要条件判断问题,关键是要弄清楚谁是条件,谁是结论.6、C【解题分析】

根据古典概型概率计算公式,计算出概率并求得数学期望,由此判断出正确选项.【题目详解】表示取出的为一个白球,所以.表示取出一个黑球,,所以.表示取出两个球,其中一黑一白,,表示取出两个球为黑球,,表示取出两个球为白球,,所以.所以,.故选:C【题目点拨】本小题主要考查离散型随机变量分布列和数学期望的计算,属于中档题.7、D【解题分析】

根据折线图、柱形图的性质,对选项逐一判断即可.【题目详解】由折线图可知A、B项均正确,该年第一季度总量和增速由高到低排位均居同一位的省份有江苏均第一.河南均第四.共2个.故C项正确;.故D项不正确.故选:D.【题目点拨】本题考查折线图、柱形图的识别,考查学生的阅读能力、数据处理能力,属于中档题.8、B【解题分析】

首先由正弦定理将边化角可得,即可得到,再求出,最后根据求出的最大值;【题目详解】解:因为,所以因为所以,即,,时故选:【题目点拨】本题考查正弦定理的应用,余弦函数的性质的应用,属于中档题.9、A【解题分析】

试题分析:由题意可得:.共轭复数为,故选A.考点:1.复数的除法运算;2.以及复平面上的点与复数的关系10、B【解题分析】

由已知结合等差数列的通项公式及求和公式可求,,然后结合等差数列的求和公式即可求解.【题目详解】解:因为,,所以,解可得,,,则.故选:B.【题目点拨】本题主要考查等差数列的通项公式及求和公式的简单应用,属于基础题.11、C【解题分析】

由每个函数的单调区间,即可得到本题答案.【题目详解】因为函数和在递增,而在递减.故选:C【题目点拨】本题主要考查常见简单函数的单调区间,属基础题.12、D【解题分析】

由复数除法运算求出,再写出其共轭复数,得共轭复数对应点的坐标.得结论.【题目详解】,,对应点为,在第四象限.故选:D.【题目点拨】本题考查复数的除法运算,考查共轭复数的概念,考查复数的几何意义.掌握复数的运算法则是解题关键.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

先对函数f(x)求导,再根据图象在(0,f(0))处切线的斜率为﹣4,得f′(0)=﹣4,由此可求a的值.【题目详解】由函数得,∵函数f(x)的图象在(0,f(0))处切线的斜率为﹣4,,.故答案为4【题目点拨】本题考查了根据曲线上在某点切线方程的斜率求参数的问题,属于基础题.14、【解题分析】

首先由分段函数的解析式代入求值即可得到,分和两种情况讨论可得;【题目详解】解:因为,所以,∵,∴当时,满足题意,∴;当时,由,解得.综合可知:满足的的取值范围为.故答案为:;.【题目点拨】本题考查分段函数的性质的应用,分类讨论思想,属于基础题.15、【解题分析】

恰好有3个不同的零点恰有三个根,然后转化成求函数值域即可.【题目详解】解:恰好有3个不同的零点恰有三个根,令,,在递增;,递减,递增,时,在有一个零点,在有2个零点;故答案为:.【题目点拨】已知函数的零点个数求参数的取值范围是重点也是难点,这类题一般用分离参数的方法,中档题.16、-20【解题分析】

根据二项式定理的通项公式,再分情况考虑即可求解.【题目详解】解:展开式中项的系数:二项式由通项公式当时,项的系数是,当时,项的系数是,故的系数为;故答案为:【题目点拨】本题主要考查二项式定理的应用,注意分情况考虑,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、【解题分析】

将圆的极坐标方程化为直角坐标方程,直线的参数方程化为普通方程,再根据直线与圆相切,利用圆心到直线的距离等于半径,即可求实数的值.【题目详解】由,得,,即圆的方程为,又由消,得,直线与圆相切,,.【题目点拨】本题重点考查方程的互化,考查直线与圆的位置关系,解题的关键是利用圆心到直线的距离等于半径,研究直线与圆相切.18、【解题分析】解:解:将曲线的极坐标方程化为直角坐标方程为,即,它表示以为圆心,2为半径圆,………4分直线方程的普通方程为,………8分圆C的圆心到直线l的距离,……………10分故直线被曲线截得的线段长度为.……………14分19、(1)(2)【解题分析】

(1)先消去参数,化为直角坐标方程,再利用求解.(2)直线与曲线方程联立,得,求得弦长和点到直线的距离,再求的面积.【题目详解】(1)由已知消去得,则,所以,所以直线的极坐标方程为.(2)由,得,设,两点对应的极分别为,,则,,所以,又点到直线的距离所以【题目点拨】本题主要考查参数方程、直角坐标方程及极坐标方程的转化和直线与曲线的位置关系,还考查了数形结合的思想和运算求解的能力,属于中档题.20、(1)极小值点为,极小值为,无极大值;(2)证明见解析【解题分析】

先对函数求导,结合已知及导数的几何意义可求,结合单调性即可求解函数的极值点及极值;令,问题可转化为求解函数的最值,结合导数可求.【题目详解】(1)由题得函数的定义域为.,由已知得,解得∴,令,得令,得,∴在上单调递增.令,得∴在上单调递减∴的极小值点为,极小值为,无极大值.(2)证明:由(1)知,∴,令,即∵,,∴恒成立.∴在上单调递增又,∴在上恒成立∴在上恒成立∴,即∴【题目点拨】本题考查了利用导数研究函数的极值问题,考查利用导数证明不等式,意在考查学生对这些知识的理解掌握水平,属于中档题.21、(1)证明见解析,;(2)证明见解析【解题分析】

(1)由,作差得到,进一步得到,再作差即可得到,从而使问题得到解决;(2),求和即可.【题目详解】(1),,两式相减:①用换,得②②—①,得,即,所以数列是等差数列,又,∴,,公差,所以.(II).【题目点拨】本题考查由与的关系求通项以及裂项相消法求数列的和,考查学生的计算能力,是一道容易题.22、(1)(ⅰ)证明见解析(ⅱ)(2)存在,【解题分析】

(1)(i)连接交于点,连接,,依题意易证四边形为平行四边形,从而有,,由此能证明PC∥平面(ii)推导出,以为原点建立空间直角坐标系,利用向量法求解;(2)设,求出平面的法向量,利用向量法求解.【题目详解】(1)(ⅰ)证明:连接交于点,连接,,因为为线段的中点,所以,因为,所以因为∥所以四边形为平行四边形.所以又因为,所以又因为平面,平面,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论