河北省邯郸市成安一中2024届高三5月份综合模拟检测试题数学试题_第1页
河北省邯郸市成安一中2024届高三5月份综合模拟检测试题数学试题_第2页
河北省邯郸市成安一中2024届高三5月份综合模拟检测试题数学试题_第3页
河北省邯郸市成安一中2024届高三5月份综合模拟检测试题数学试题_第4页
河北省邯郸市成安一中2024届高三5月份综合模拟检测试题数学试题_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省邯郸市成安一中2024届高三5月份综合模拟检测试题数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知为定义在上的奇函数,且满足当时,,则()A. B. C. D.2.设m,n为直线,、为平面,则的一个充分条件可以是()A.,, B.,C., D.,3.在钝角中,角所对的边分别为,为钝角,若,则的最大值为()A. B. C.1 D.4.已知直线和平面,若,则“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.不充分不必要5.已知抛物线:,点为上一点,过点作轴于点,又知点,则的最小值为()A. B. C.3 D.56.已知直线过圆的圆心,则的最小值为()A.1 B.2 C.3 D.47.已知锐角满足则()A. B. C. D.8.若2m>2n>1,则()A. B.πm﹣n>1C.ln(m﹣n)>0 D.9.设为非零实数,且,则()A. B. C. D.10.设x、y、z是空间中不同的直线或平面,对下列四种情形:①x、y、z均为直线;②x、y是直线,z是平面;③z是直线,x、y是平面;④x、y、z均为平面.其中使“且”为真命题的是()A.③④ B.①③ C.②③ D.①②11.若不相等的非零实数,,成等差数列,且,,成等比数列,则()A. B. C.2 D.12.设全集,集合,,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若,且,则的最小值是______.14.在如图所示的三角形数阵中,用表示第行第个数,已知,且当时,每行中的其他各数均等于其“肩膀”上的两个数之和,即,若,则正整数的最小值为______.15.记复数z=a+bi(i为虚数单位)的共轭复数为,已知z=2+i,则_____.16.若复数(是虚数单位),则________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设数列是公差不为零的等差数列,其前项和为,,若,,成等比数列.(1)求及;(2)设,设数列的前项和,证明:.18.(12分)设为抛物线的焦点,,为抛物线上的两个动点,为坐标原点.(Ⅰ)若点在线段上,求的最小值;(Ⅱ)当时,求点纵坐标的取值范围.19.(12分)已知函数(1)求单调区间和极值;(2)若存在实数,使得,求证:20.(12分)(1)已知数列满足:,且(为非零常数,),求数列的前项和;(2)已知数列满足:(ⅰ)对任意的;(ⅱ)对任意的,,且.①若,求数列是等比数列的充要条件.②求证:数列是等比数列,其中.21.(12分)运输一批海鲜,可在汽车、火车、飞机三种运输工具中选择,它们的速度分别为60千米/小时、120千米/小时、600千米/小时,每千米的运费分别为20元、10元、50元.这批海鲜在运输过程中每小时的损耗为m元(),运输的路程为S(千米).设用汽车、火车、飞机三种运输工具运输时各自的总费用(包括运费和损耗费)分别为(元)、(元)、(元).(1)请分别写出、、的表达式;(2)试确定使用哪种运输工具总费用最省.22.(10分)已知△ABC的两个顶点A,B的坐标分别为(,0),(,0),圆E是△ABC的内切圆,在边AC,BC,AB上的切点分别为P,Q,R,|CP|=2,动点C的轨迹为曲线G.(1)求曲线G的方程;(2)设直线l与曲线G交于M,N两点,点D在曲线G上,是坐标原点,判断四边形OMDN的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】

由题设条件,可得函数的周期是,再结合函数是奇函数的性质将转化为函数值,即可得到结论.【题目详解】由题意,,则函数的周期是,所以,,又函数为上的奇函数,且当时,,所以,.故选:C.【题目点拨】本题考查函数的周期性,由题设得函数的周期是解答本题的关键,属于基础题.2、B【解题分析】

根据线面垂直的判断方法对选项逐一分析,由此确定正确选项.【题目详解】对于A选项,当,,时,由于不在平面内,故无法得出.对于B选项,由于,,所以.故B选项正确.对于C选项,当,时,可能含于平面,故无法得出.对于D选项,当,时,无法得出.综上所述,的一个充分条件是“,”故选:B【题目点拨】本小题主要考查线面垂直的判断,考查充分必要条件的理解,属于基础题.3、B【解题分析】

首先由正弦定理将边化角可得,即可得到,再求出,最后根据求出的最大值;【题目详解】解:因为,所以因为所以,即,,时故选:【题目点拨】本题考查正弦定理的应用,余弦函数的性质的应用,属于中档题.4、B【解题分析】

由线面关系可知,不能确定与平面的关系,若一定可得,即可求出答案.【题目详解】,不能确定还是,,当时,存在,,由又可得,所以“”是“”的必要不充分条件,故选:B【题目点拨】本题主要考查了必要不充分条件,线面垂直,线线垂直的判定,属于中档题.5、C【解题分析】

由,再运用三点共线时和最小,即可求解.【题目详解】.故选:C【题目点拨】本题考查抛物线的定义,合理转化是本题的关键,注意抛物线的性质的灵活运用,属于中档题.6、D【解题分析】

圆心坐标为,代入直线方程,再由乘1法和基本不等式,展开计算即可得到所求最小值.【题目详解】圆的圆心为,由题意可得,即,,,则,当且仅当且即时取等号,故选:.【题目点拨】本题考查最值的求法,注意运用乘1法和基本不等式,注意满足的条件:一正二定三等,同时考查直线与圆的关系,考查运算能力,属于基础题.7、C【解题分析】

利用代入计算即可.【题目详解】由已知,,因为锐角,所以,,即.故选:C.【题目点拨】本题考查二倍角的正弦、余弦公式的应用,考查学生的运算能力,是一道基础题.8、B【解题分析】

根据指数函数的单调性,结合特殊值进行辨析.【题目详解】若2m>2n>1=20,∴m>n>0,∴πm﹣n>π0=1,故B正确;而当m,n时,检验可得,A、C、D都不正确,故选:B.【题目点拨】此题考查根据指数幂的大小关系判断参数的大小,根据参数的大小判定指数幂或对数的大小关系,需要熟练掌握指数函数和对数函数的性质,结合特值法得出选项.9、C【解题分析】

取,计算知错误,根据不等式性质知正确,得到答案.【题目详解】,故,,故正确;取,计算知错误;故选:.【题目点拨】本题考查了不等式性质,意在考查学生对于不等式性质的灵活运用.10、C【解题分析】

①举反例,如直线x、y、z位于正方体的三条共点棱时②用垂直于同一平面的两直线平行判断.③用垂直于同一直线的两平面平行判断.④举例,如x、y、z位于正方体的三个共点侧面时.【题目详解】①当直线x、y、z位于正方体的三条共点棱时,不正确;②因为垂直于同一平面的两直线平行,正确;③因为垂直于同一直线的两平面平行,正确;④如x、y、z位于正方体的三个共点侧面时,不正确.故选:C.【题目点拨】此题考查立体几何中线面关系,选择题一般可通过特殊值法进行排除,属于简单题目.11、A【解题分析】

由题意,可得,,消去得,可得,继而得到,代入即得解【题目详解】由,,成等差数列,所以,又,,成等比数列,所以,消去得,所以,解得或,因为,,是不相等的非零实数,所以,此时,所以.故选:A【题目点拨】本题考查了等差等比数列的综合应用,考查了学生概念理解,转化划归,数学运算的能力,属于中档题.12、D【解题分析】

求解不等式,得到集合A,B,利用交集、补集运算即得解【题目详解】由于故集合或故集合故选:D【题目点拨】本题考查了集合的交集和补集混合运算,考查了学生概念理解,数学运算的能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、8【解题分析】

利用的代换,将写成,然后根据基本不等式求解最小值.【题目详解】因为(即取等号),所以最小值为.【题目点拨】已知,求解()的最小值的处理方法:利用,得到,展开后利用基本不等式求解,注意取等号的条件.14、2022【解题分析】

根据条件先求出数列的通项,利用累加法进行求解即可.【题目详解】,,,下面求数列的通项,由题意知,,,,,,数列是递增数列,且,的最小值为.故答案为:.【题目点拨】本题主要考查归纳推理的应用,结合数列的性质求出数列的通项是解决本题的关键.综合性较强,属于难题.15、3﹣4i【解题分析】

计算得到z2=(2+i)2=3+4i,再计算得到答案.【题目详解】∵z=2+i,∴z2=(2+i)2=3+4i,则.故答案为:3﹣4i.【题目点拨】本题考查了复数的运算,共轭复数,意在考查学生的计算能力.16、【解题分析】

直接根据复数的代数形式四则运算法则计算即可.【题目详解】,.【题目点拨】本题主要考查复数的代数形式四则运算法则的应用.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2)证明见解析.【解题分析】

(1)根据题中条件求出等差数列的首项和公差,然后根据首项和公差即可求出数列的通项和前项和;(2)根据裂项求和求出,根据的表达式即可证明.【题目详解】(1)设的公差为,由题意有,且,所以,;(2)因为,所以,.【题目点拨】本题主要考查了等差数列基本量的求解,裂项求和法,属于基础题.18、(Ⅰ)(Ⅱ)【解题分析】

(1)由抛物线的性质,当轴时,最小;(2)设点,,分别代入抛物线方程和得到三个方程,消去,得到关于的一元二次方程,利用判别式即可求出的范围.【题目详解】解:(1)由抛物线的标准方程,,根据抛物线的性质,当轴时,最小,最小值为,即为4.(2)由题意,设点,,其中,.则,①,②因为,,,所以.③由①②③,得,由,且,得,解不等式,得点纵坐标的范围为.【题目点拨】本题主要考查抛物线的方程和性质和二次方程的解的问题,考查运算能力,此类问题能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等,易错点是复杂式子的变形能力不足,导致错解.19、(1)时,函数单调递增,,函数单调递减,;(2)见解析【解题分析】

(1)求出函数的定义域与导函数,利用导数求函数的单调区间,即可得到函数的极值;(2)易得且,要证明,即证,即证,即对恒成立,构造函数,,利用导数研究函数的单调性与最值,即可得证;【题目详解】解:(1)因为定义域为,所以,时,,即在和上单调递增,当时,,即函数在单调递减,所以在处取得极小值,在处取得极大值;,;(2)易得,要证明,即证,即证即证对恒成立,令,,则令,解得,即在上单调递增;令,解得,即在上单调递减;则在取得极小值,也就是最小值,从而结论得证.【题目点拨】本题考查利用导数研究函数的单调性与极值,利用导数证明不等式,考查运算求解能力,考查函数与方程思想,属于中档题.20、(1);(2)①;②证明见解析.【解题分析】

(1)由条件可得,结合等差数列的定义和通项公式、求和公式,即可得到所求;(2)①若,可令,运用已知条件和等比数列的性质,即可得到所求充要条件;②当,,,由等比数列的定义和不等式的性质,化简变形,即可得到所求结论.【题目详解】解:(1),,且为非零常数,,,可得,可得数列的首项为,公差为的等差数列,可得,前项和为;(2)①若,可令,,且,即,,,,对任意的,,可得,可得,,数列是等比数列,则,,可得,,即,又,即有,即,数列是等比数列的充要条件为;②证明:对任意的,,,,,当,,,可得,即以为首项、为公比的等比数列;同理可得以为首项、为公比的等比数列;对任意的,,可得,即有,所以对,,,可得,,即且,则,可令,故数列,,,,,,,,,是以为首项,为公比的等比数列,其中.【题目点拨】本题考查新定义的理解和运用,考查等差数列和等比数列的定义和通项公式的运用,考查分类讨论思想方法和推理、运算能力,属于难题.21、(1),,.(2)当时,此时选择火车运输费最省;当时,此时选择飞机运输费用最省;当时,此时选择火车或飞机运输费用最省.【解题分析】

(1)将运费和损耗费相加得出总费用的表达式.(2)作差比较、的大小关系得出结论.【题目详解】(1),,.(2),故,恒成立,故只需比较与的大小关系即可,令,故当,即时,,即,此时选择火车运输费最省,当,即时,,即,此时选择飞机运输费用最省.当,即时,,,此时选择火车或飞机运输费用最省.【题目点拨】本题考查了常见函数的模型,考查了分类讨论的思想,属于基础题.22、(1).(2)四边形OMDN的面积是定值,其定值为.【解题分析】

(1)根据三角形内切圆的性质证得,由此判断出点的轨迹为椭圆,并由此求得曲线的方程.(2)将直线的斜率分成不存在或存在两种情况,求出平行四边形的面积,两种情况下四边形的面积都为,由此证得四边形的面积为定值.【题目详解】(1)因为圆E为△ABC的内切圆,所以|CA|+|CB|=|CP|+|CQ|+|PA|+|QB|=2|CP|+|AR|+|BR|=2|CP|+|AB|=4>|AB|所以点C的轨迹为以点A和点B为焦点的椭圆(点不在轴上),所以c,a=2,b,所以曲线G的方程为,(2)因为,故四边形为平行四边形.当直线l的斜率不存在时,则四边形为为菱形,故直线MN的方程为x=﹣1或x=1,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论