版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省豫东、豫北十所名校2024届高三下学期开学考试物理试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,当时,恒成立,则的取值范围为()A. B. C. D.2.数列{an}是等差数列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,则实数λ的最大值为()A. B. C. D.3.设是定义在实数集上的函数,满足条件是偶函数,且当时,,则,,的大小关系是()A. B. C. D.4.执行如图所示的程序框图,若输入的,则输出的()A.9 B.31 C.15 D.635.已知a>0,b>0,a+b=1,若α=,则的最小值是()A.3 B.4 C.5 D.66.在中,角所对的边分别为,已知,.当变化时,若存在最大值,则正数的取值范围为A. B. C. D.7.已知,,,则()A. B. C. D.8.若、满足约束条件,则的最大值为()A. B. C. D.9.下图是来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边、直角边,已知以直角边为直径的半圆的面积之比为,记,则()A. B. C.1 D.10.已知集合,,若,则()A. B. C. D.11.一个组合体的三视图如图所示(图中网格小正方形的边长为1),则该几何体的体积是()A. B. C. D.12.设复数满足,在复平面内对应的点为,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若,则______.14.已知(为虚数单位),则复数________.15.已知圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为______.16.在平面直角坐标系中,点P在直线上,过点P作圆C:的一条切线,切点为T.若,则的长是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,四棱锥V﹣ABCD中,底面ABCD是菱形,对角线AC与BD交于点O,VO⊥平面ABCD,E是棱VC的中点.(1)求证:VA∥平面BDE;(2)求证:平面VAC⊥平面BDE.18.(12分)如图所示,四棱锥P﹣ABCD中,PC⊥底面ABCD,PC=CD=2,E为AB的中点,底面四边形ABCD满足∠ADC=∠DCB=90°,AD=1,BC=1.(Ⅰ)求证:平面PDE⊥平面PAC;(Ⅱ)求直线PC与平面PDE所成角的正弦值;(Ⅲ)求二面角D﹣PE﹣B的余弦值.19.(12分)自湖北武汉爆发新型冠状病毒惑染的肺炎疫情以来,武汉医护人员和医疗、生活物资严重缺乏,全国各地纷纷驰援.截至1月30日12时,湖北省累计接收捐赠物资615.43万件,包括医用防护服2.6万套N95口軍47.9万个,医用一次性口罩172.87万个,护目镜3.93万个等.中某运输队接到给武汉运送物资的任务,该运输队有8辆载重为6t的A型卡车,6辆载重为10t的B型卡车,10名驾驶员,要求此运输队每天至少运送720t物资.已知每辆卡车每天往返的次数:A型卡车16次,B型卡车12次;每辆卡车每天往返的成本:A型卡车240元,B型卡车378元.求每天派出A型卡车与B型卡车各多少辆,运输队所花的成本最低?20.(12分)已知函数.⑴当时,求函数的极值;⑵若存在与函数,的图象都相切的直线,求实数的取值范围.21.(12分)传染病的流行必须具备的三个基本环节是:传染源、传播途径和人群易感性.三个环节必须同时存在,方能构成传染病流行.呼吸道飞沫和密切接触传播是新冠状病毒的主要传播途径,为了有效防控新冠状病毒的流行,人们出行都应该佩戴口罩.某地区已经出现了新冠状病毒的感染病人,为了掌握该地区居民的防控意识和防控情况,用分层抽样的方法从全体居民中抽出一个容量为100的样本,统计样本中每个人出行是否会佩戴口罩的情况,得到下面列联表:戴口罩不戴口罩青年人5010中老年人2020(1)能否有的把握认为是否会佩戴口罩出行的行为与年龄有关?(2)用样本估计总体,若从该地区出行不戴口罩的居民中随机抽取5人,求恰好有2人是青年人的概率.附:0.1000.0500.0100.0012.7063.8416.63510.82822.(10分)在直角坐标系中,曲线的参数方程为以为极点,轴正半轴为极轴建立极坐标系,设点在曲线上,点在曲线上,且为正三角形.(1)求点,的极坐标;(2)若点为曲线上的动点,为线段的中点,求的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
分析可得,显然在上恒成立,只需讨论时的情况即可,,然后构造函数,结合的单调性,不等式等价于,进而求得的取值范围即可.【题目详解】由题意,若,显然不是恒大于零,故.,则在上恒成立;当时,等价于,因为,所以.设,由,显然在上单调递增,因为,所以等价于,即,则.设,则.令,解得,易得在上单调递增,在上单调递减,从而,故.故选:A.【题目点拨】本题考查了不等式恒成立问题,利用函数单调性是解决本题的关键,考查了学生的推理能力,属于基础题.2、D【解题分析】
利用等差数列通项公式推导出λ,由d∈[1,2],能求出实数λ取最大值.【题目详解】∵数列{an}是等差数列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,∴1+3d+λ(1+9d)+1+15d=15,解得λ,∵d∈[1,2],λ2是减函数,∴d=1时,实数λ取最大值为λ.故选D.【题目点拨】本题考查实数值的最大值的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.3、C【解题分析】∵y=f(x+1)是偶函数,∴f(-x+1)=f(x+1),即函数f(x)关于x=1对称.
∵当x≥1时,为减函数,∵f(log32)=f(2-log32)=f()且==log34,log34<<3,∴b>a>c,
故选C4、B【解题分析】
根据程序框图中的循环结构的运算,直至满足条件退出循环体,即可得出结果.【题目详解】执行程序框;;;;;,满足,退出循环,因此输出,故选:B.【题目点拨】本题考查循环结构输出结果,模拟程序运行是解题的关键,属于基础题.5、C【解题分析】
根据题意,将a、b代入,利用基本不等式求出最小值即可.【题目详解】∵a>0,b>0,a+b=1,∴,当且仅当时取“=”号.
答案:C【题目点拨】本题考查基本不等式的应用,“1”的应用,利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是首先要判断参数是否为正;二定是其次要看和或积是否为定值(和定积最大,积定和最小);三相等是最后一定要验证等号能否成立,属于基础题.6、C【解题分析】
因为,,所以根据正弦定理可得,所以,,所以,其中,,因为存在最大值,所以由,可得,所以,所以,解得,所以正数的取值范围为,故选C.7、B【解题分析】
利用指数函数和对数函数的单调性,将数据和做对比,即可判断.【题目详解】由于,,故.故选:B.【题目点拨】本题考查利用指数函数和对数函数的单调性比较大小,属基础题.8、C【解题分析】
作出不等式组所表示的可行域,平移直线,找出直线在轴上的截距最大时对应的最优解,代入目标函数计算即可.【题目详解】作出满足约束条件的可行域如图阴影部分(包括边界)所示.由,得,平移直线,当直线经过点时,该直线在轴上的截距最大,此时取最大值,即.故选:C.【题目点拨】本题考查简单的线性规划问题,考查线性目标函数的最值,一般利用平移直线的方法找到最优解,考查数形结合思想的应用,属于基础题.9、D【解题分析】
根据以直角边为直径的半圆的面积之比求得,即的值,由此求得和的值,进而求得所求表达式的值.【题目详解】由于直角边为直径的半圆的面积之比为,所以,即,所以,所以.故选:D【题目点拨】本小题主要考查同角三角函数的基本关系式,考查二倍角公式,属于基础题.10、A【解题分析】
由,得,代入集合B即可得.【题目详解】,,,即:,故选:A【题目点拨】本题考查了集合交集的含义,也考查了元素与集合的关系,属于基础题.11、C【解题分析】
根据组合几何体的三视图还原出几何体,几何体是圆柱中挖去一个三棱柱,从而解得几何体的体积.【题目详解】由几何体的三视图可得,几何体的结构是在一个底面半径为1的圆、高为2的圆柱中挖去一个底面腰长为的等腰直角三角形、高为2的棱柱,故此几何体的体积为圆柱的体积减去三棱柱的体积,即,故选C.【题目点拨】本题考查了几何体的三视图问题、组合几何体的体积问题,解题的关键是要能由三视图还原出组合几何体,然后根据几何体的结构求出其体积.12、B【解题分析】
设,根据复数的几何意义得到、的关系式,即可得解;【题目详解】解:设∵,∴,解得.故选:B【题目点拨】本题考查复数的几何意义的应用,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
直接利用关系式求出函数的被积函数的原函数,进一步求出的值.【题目详解】解:若,则,即,所以.故答案为:.【题目点拨】本题考查的知识要点:定积分的应用,被积函数的原函数的求法,主要考查学生的运算能力和转换能力及思维能力,属于基础题.14、【解题分析】
解:故答案为:【题目点拨】本题考查复数代数形式的乘除运算,属于基础题.15、【解题分析】
设圆柱的轴截面的边长为x,可求得,代入圆柱的表面积公式,即得解【题目详解】设圆柱的轴截面的边长为x,则由,得,∴.故答案为:【题目点拨】本题考查了圆柱的轴截面和表面积,考查了学生空间想象,转化划归,数学运算的能力,属于基础题.16、【解题分析】
作出图像,设点,根据已知可得,,且,可解出,计算即得.【题目详解】如图,设,圆心坐标为,可得,,,,,解得,,即的长是.故答案为:【题目点拨】本题考查直线与圆的位置关系,以及求平面两点间的距离,运用了数形结合的思想.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)见解析【解题分析】
(1)连结OE,证明VA∥OE得到答案.(2)证明VO⊥BD,BD⊥AC,得到BD⊥平面VAC,得到证明.【题目详解】(1)连结OE.因为底面ABCD是菱形,所以O为AC的中点,又因为E是棱VC的中点,所以VA∥OE,又因为OE⊂平面BDE,VA⊄平面BDE,所以VA∥平面BDE;(2)因为VO⊥平面ABCD,又BD⊂平面ABCD,所以VO⊥BD,因为底面ABCD是菱形,所以BD⊥AC,又VO∩AC=O,VO,AC⊂平面VAC,所以BD⊥平面VAC.又因为BD⊂平面BDE,所以平面VAC⊥平面BDE.【题目点拨】本题考查了线面平行,面面垂直,意在考查学生的推断能力和空间想象能力.18、(Ⅰ)证明见解析(Ⅱ).(Ⅲ)﹣.【解题分析】
(Ⅰ)由题知,如图以点为原点,直线分别为轴,建立空间直角坐标系,计算,证明,从而平面PAC,即可得证;(Ⅱ)求解平面PDE的一个法向量,计算,即可得直线PC与平面PDE所成角的正弦值;(Ⅲ)求解平面PBE的一个法向量,计算,即可得二面角D﹣PE﹣B的余弦值.【题目详解】(Ⅰ)PC⊥底面ABCD,,如图以点为原点,直线分别为轴,建立空间直角坐标系,则,,,,又,平面PAC,平面PDE,平面PDE⊥平面PAC;(Ⅱ)设为平面PDE的一个法向量,又,则,取,得,直线PC与平面PDE所成角的正弦值;(Ⅲ)设为平面PBE的一个法向量,又则,取,得,,二面角D﹣PE﹣B的余弦值﹣.【题目点拨】本题主要考查了平面与平面的垂直,直线与平面所成角的计算,二面角大小的求解,考查了空间向量在立体几何中的应用,考查了学生的空间想象能力与运算求解能力.19、每天派出A型卡车辆,派出B型卡车辆,运输队所花成本最低【解题分析】
设每天派出A型卡车辆,则派出B型卡车辆,由题意列出约束条件,作出可行域,求出使目标函数取最小值的整数解,即可得解.【题目详解】设每天派出A型卡车辆,则派出B型卡车辆,运输队所花成本为元,由题意可知,,整理得,目标函数,如图所示,为不等式组表示的可行域,由图可知,当直线经过点时,最小,解方程组,解得,,然而,故点不是最优解.因此在可行域的整点中,点使得取最小值,即,故每天派出A型卡车辆,派出B型卡车辆,运输队所花成本最低.【题目点拨】本题考查了线性规划问题中的最优整数解问题,考查了数形结合的思想,解题关键在于列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数,同时注意整点的选取,属于中档题.20、(1)当时,函数取得极小值为,无极大值;(2)【解题分析】试题分析:(1),通过求导分析,得函数取得极小值为,无极大值;(2),所以,通过求导讨论,得到的取值范围是.试题解析:(1)函数的定义域为当时,,所以所以当时,,当时,,所以函数在区间单调递减,在区间单调递增,所以当时,函数取得极小值为,无极大值;(2)设函数上点与函数上点处切线相同,则所以所以,代入得:设,则不妨设则当时,,当时,所以在区间上单调递减,在区间上单调递增,代入可得:设,则对恒成立,所以在区间上单调递增,又所以当时,即当时,又当时因此当时,函数必有零点;即当时,必存在使得成立;即存在使得函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030年中国汽车养护行业资本规划与股权融资战略制定与实施研究报告
- 新形势下铜板带箔材行业转型升级战略制定与实施研究报告
- 2025-2030年中国预应力混凝土用钢材行业资本规划与股权融资战略制定与实施研究报告
- 暴力行为的防范及处置措施2
- 农副产品综合批发市场项目可行性研究报告申请备案
- AG玻璃项目可行性研究申请报告
- 高端卫浴知识培训课件
- 浙江省杭州市余杭区2023-2024学年五年级上学期英语期末试卷(1月)
- 宁夏银川一中、昆明一中2023届高三联合二模考试数学(文)试题 附答案
- 年产9000万平方米瓦楞纸板项目可行性研究报告模板-立项拿地
- 2024年06月上海广发银行上海分行社会招考(622)笔试历年参考题库附带答案详解
- TSG 51-2023 起重机械安全技术规程 含2024年第1号修改单
- 计算机科学导论
- 浙江省杭州市钱塘区2023-2024学年四年级上学期英语期末试卷
- 《工程勘察设计收费标准》(2002年修订本)
- 2024年一级消防工程师《消防安全技术综合能力》考试真题及答案解析
- 2024-2025学年六上科学期末综合检测卷(含答案)
- 安徽省森林抚育技术导则
- 2023七年级英语下册 Unit 3 How do you get to school Section A 第1课时(1a-2e)教案 (新版)人教新目标版
- 泌尿科主任述职报告
- 2024年湖南省公务员考试《行测》真题及答案解析
评论
0/150
提交评论