




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
天津市红桥区2024届高三下教学调研(一)数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知公差不为0的等差数列的前项的和为,,且成等比数列,则()A.56 B.72 C.88 D.402.若点是角的终边上一点,则()A. B. C. D.3.在中,为边上的中线,为的中点,且,,则()A. B. C. D.4.若的展开式中的常数项为-12,则实数的值为()A.-2 B.-3 C.2 D.35.已知是第二象限的角,,则()A. B. C. D.6.直线l过抛物线的焦点且与抛物线交于A,B两点,则的最小值是A.10 B.9 C.8 D.77.函数f(x)=2x-3A.[32C.[328.对于定义在上的函数,若下列说法中有且仅有一个是错误的,则错误的一个是()A.在上是减函数 B.在上是增函数C.不是函数的最小值 D.对于,都有9.抛物线的焦点为,点是上一点,,则()A. B. C. D.10.已知等差数列{an},则“a2>a1”是“数列{an}为单调递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件11.若,,则的值为()A. B. C. D.12.已知集合,,,则集合()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.甲、乙、丙、丁4名大学生参加两个企业的实习,每个企业两人,则“甲、乙两人恰好在同一企业”的概率为_________.14.某班星期一共八节课(上午、下午各四节,其中下午最后两节为社团活动),排课要求为:语文、数学、外语、物理、化学各排一节,从生物、历史、地理、政治四科中选排一节.若数学必须安排在上午且与外语不相邻(上午第四节和下午第一节不算相邻),则不同的排法有__________种.15.已知点M是曲线y=2lnx+x2﹣3x上一动点,当曲线在M处的切线斜率取得最小值时,该切线的方程为_______.16.的展开式中,若的奇数次幂的项的系数之和为32,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设数列是等比数列,,已知,(1)求数列的首项和公比;(2)求数列的通项公式.18.(12分)在以为顶点的五面体中,底面为菱形,,,,二面角为直二面角.(Ⅰ)证明:;(Ⅱ)求二面角的余弦值.19.(12分)如图所示,在四棱锥中,底面是棱长为2的正方形,侧面为正三角形,且面面,分别为棱的中点.(1)求证:平面;(2)求二面角的正切值.20.(12分)已知函数,其中为自然对数的底数,.(1)若曲线在点处的切线与直线平行,求的值;(2)若,问函数有无极值点?若有,请求出极值点的个数;若没有,请说明理由.21.(12分)已知直线:(为参数),曲线(为参数).(1)设与相交于,两点,求;(2)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点是曲线上的一个动点,求它到直线距离的最小值.22.(10分)如图,在斜三棱柱中,平面平面,,,,均为正三角形,E为AB的中点.(Ⅰ)证明:平面;(Ⅱ)求斜三棱柱截去三棱锥后剩余部分的体积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
,将代入,求得公差d,再利用等差数列的前n项和公式计算即可.【题目详解】由已知,,,故,解得或(舍),故,.故选:B.【题目点拨】本题考查等差数列的前n项和公式,考查等差数列基本量的计算,是一道容易题.2、A【解题分析】
根据三角函数的定义,求得,再由正弦的倍角公式,即可求解.【题目详解】由题意,点是角的终边上一点,根据三角函数的定义,可得,则,故选A.【题目点拨】本题主要考查了三角函数的定义和正弦的倍角公式的化简、求值,其中解答中根据三角函数的定义和正弦的倍角公式,准确化简、计算是解答的关键,着重考查了推理与运算能力,属于基础题.3、A【解题分析】
根据向量的线性运算可得,利用及,计算即可.【题目详解】因为,所以,所以,故选:A【题目点拨】本题主要考查了向量的线性运算,向量数量积的运算,向量数量积的性质,属于中档题.4、C【解题分析】
先研究的展开式的通项,再分中,取和两种情况求解.【题目详解】因为的展开式的通项为,所以的展开式中的常数项为:,解得,故选:C.【题目点拨】本题主要考查二项式定理的通项公式,还考查了运算求解的能力,属于基础题.5、D【解题分析】
利用诱导公式和同角三角函数的基本关系求出,再利用二倍角的正弦公式代入求解即可.【题目详解】因为,由诱导公式可得,,即,因为,所以,由二倍角的正弦公式可得,,所以.故选:D【题目点拨】本题考查诱导公式、同角三角函数的基本关系和二倍角的正弦公式;考查运算求解能力和知识的综合运用能力;属于中档题.6、B【解题分析】
根据抛物线中过焦点的两段线段关系,可得;再由基本不等式可求得的最小值.【题目详解】由抛物线标准方程可知p=2因为直线l过抛物线的焦点,由过抛物线焦点的弦的性质可知所以因为为线段长度,都大于0,由基本不等式可知,此时所以选B【题目点拨】本题考查了抛物线的基本性质及其简单应用,基本不等式的用法,属于中档题.7、A【解题分析】
根据幂函数的定义域与分母不为零列不等式组求解即可.【题目详解】因为函数y=2x-3解得x≥32且∴函数f(x)=2x-3+1【题目点拨】定义域的三种类型及求法:(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解;(2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解;(3)若已知函数fx的定义域为a,b,则函数fgx8、B【解题分析】
根据函数对称性和单调性的关系,进行判断即可.【题目详解】由得关于对称,若关于对称,则函数在上不可能是单调的,故错误的可能是或者是,若错误,则在,上是减函数,在在上是增函数,则为函数的最小值,与矛盾,此时也错误,不满足条件.故错误的是,故选:.【题目点拨】本题主要考查函数性质的综合应用,结合对称性和单调性的关系是解决本题的关键.9、B【解题分析】
根据抛物线定义得,即可解得结果.【题目详解】因为,所以.故选B【题目点拨】本题考查抛物线定义,考查基本分析求解能力,属基础题.10、C【解题分析】试题分析:根据充分条件和必要条件的定义进行判断即可.解:在等差数列{an}中,若a2>a1,则d>0,即数列{an}为单调递增数列,若数列{an}为单调递增数列,则a2>a1,成立,即“a2>a1”是“数列{an}为单调递增数列”充分必要条件,故选C.考点:必要条件、充分条件与充要条件的判断.11、A【解题分析】
取,得到,取,则,计算得到答案.【题目详解】取,得到;取,则.故.故选:.【题目点拨】本题考查了二项式定理的应用,取和是解题的关键.12、D【解题分析】
根据集合的混合运算,即可容易求得结果.【题目详解】,故可得.故选:D.【题目点拨】本题考查集合的混合运算,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
求出所有可能,找出符合可能的情况,代入概率计算公式.【题目详解】解:甲、乙、丙、丁4名大学生参加两个企业的实习,每个企业两人,共有种,甲乙在同一个公司有两种可能,故概率为,故答案为.【题目点拨】本题考查古典概型及其概率计算公式,属于基础题14、1344【解题分析】
分四种情况讨论即可【题目详解】解:数学排在第一节时有:数学排在第二节时有:数学排在第三节时有:数学排在第四节时有:所以共有1344种故答案为:1344【题目点拨】考查排列、组合的应用,注意分类讨论,做到不重不漏;基础题.15、【解题分析】
先求导数可得切线斜率,利用基本不等式可得切点横坐标,从而可得切线方程.【题目详解】,,=1时有最小值1,此时M(1,﹣2),故切线方程为:,即.故答案为:.【题目点拨】本题主要考查导数的几何意义,切点处的导数值等于切线的斜率是求解的关键,侧重考查数学运算的核心素养.16、【解题分析】试题分析:由已知得,故的展开式中x的奇数次幂项分别为,,,,,其系数之和为,解得.考点:二项式定理.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】
本题主要考查了等比数列的通项公式的求解,数列求和的错位相减求和是数列求和中的重点与难点,要注意掌握.(1)设等比数列{an}的公比为q,则q+q2=6,解方程可求q(2)由(1)可求an=a1•qn-1=2n-1,结合数列的特点,考虑利用错位相减可求数列的和解:(1)(2),两式相减:18、(Ⅰ)见解析(Ⅱ)【解题分析】
(Ⅰ)连接交于点,取中点,连结,证明平面得到答案.(Ⅱ)分别以为轴建立如图所示的空间直角坐标系,平面的法向量为,平面的法向量为,计算夹角得到答案.【题目详解】(Ⅰ)连接交于点,取中点,连结因为为菱形,所以.因为,所以.因为二面角为直二面角,所以平面平面,且平面平面,所以平面所以因为所以是平行四边形,所以.所以,所以,所以平面,又平面,所以.(Ⅱ)由(Ⅰ)可知两两垂直,分别以为轴建立如图所示的空间直角坐标系.设设平面的法向量为,由,取.平面的法向量为.所以二面角余弦值为.【题目点拨】本题考查了线线垂直,二面角,意在考查学生的计算能力和空间想象能力.19、(1)见证明;(2)【解题分析】
(1)取PD中点G,可证EFGA是平行四边形,从而,得证线面平行;(2)取AD中点O,连结PO,可得面,连交于,可证是二面角的平面角,再在中求解即得.【题目详解】(1)证明:取PD中点G,连结为的中位线,且,又且,且,∴EFGA是平行四边形,则,又面,面,面;(2)解:取AD中点O,连结PO,∵面面,为正三角形,面,且,连交于,可得,,则,即.连,又,可得平面,则,即是二面角的平面角,在中,∴,即二面角的正切值为.【题目点拨】本题考查线面平行证明,考查求二面角.求二面角的步骤是一作二证三计算.即先作出二面角的平面角,然后证明此角是要求的二面角的平面角,最后在三角形中计算.20、(1)(2)没有,理由见解析【解题分析】
(1)求导,研究函数在x=0处的导数,等于切线斜率,即得解;(2)对f(x)求导,构造,可证得,得到,即得解【题目详解】(1)由题意得,∵曲线在点处的切线与直线平行,∴切线的斜率为,解得.(2)当时,,,设,则,则函数在区间上单调递减,在区间上单调递增,又函数,故恒成立,∴函数在定义域内单调递增,函数不存在极值点.【题目点拨】本题考查了导数在切线问题和函数极值问题中的应用,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.21、(1);(2).【解题分析】
(1)将直线和曲线化为普通方程,联立直线和曲线,可得交点坐标,可得的值;(2)可得曲线的参数方程,利用点到直线的距离公式结合三角形的最值可得答案.【题目详解】解:(1)直线的普通方程为,的普通方程.联立方程组,解得与的交点为,,则.(2)曲线的参数方程为(为参数),故点的坐标为,从而点到直线的距离是,由此当时,取得最小值,且最小值为.【题目点拨】本题主要考查参数方程与普通方程的转化及参数方程的基本性质、点到直线的距离公式等,属于中档题.22、(Ⅰ)见解析;(Ⅱ)【解题分析】
(Ⅰ)要证明线面平行,需先证明线线平行,所以连接,交于点M,连接ME,证明;(Ⅱ)由题意可知点到平面ABC的距离等于点到平面ABC的距离,根据体积公式剩余部分的体积是.【题目详解】(Ⅰ)如图,连接,交于点M,连接M
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农业综合种植与技术咨询服务协议
- 医药行业五家公司财务分析报告
- 制造行业绩效考核及表格
- 领导力培训项目总结与展望
- 项目驱动的医疗数据分析团队协作培训
- 顾客行为分析在新零售店面布局中的实践
- 音乐产业中的非物质文化遗产利用研究
- 青年群体与文化节庆活动品牌的互动关系
- 顾客体验升级与品牌传播策略的结合点
- 青少年时间管理能力的培养
- 肾绞痛的护理
- 零星工程维修投标方案技术标
- 三超一疲劳安全教育
- 《自动控制原理》说课
- 医疗器械(耗材)项目投标服务投标方案(技术方案)
- 乡村医生从业管理条例全面解读
- 2024年中国石油集团招聘笔试参考题库含答案解析
- 神经科患者的心理支持与护理
- 智慧楼宇智能化管理系统需求规格说明书
- 幼儿园中班数学《小鱼有多长》
- 过程控制系统及仪表智慧树知到课后章节答案2023年下青岛大学
评论
0/150
提交评论